• Title/Summary/Keyword: Squib Ignition

Search Result 5, Processing Time 0.018 seconds

Squib Ignition and Status Check Circuits Design for Compact Embedded Systems in Guided Missiles (유도무기의 소형 임베디드 시스템을 위한 스퀴브 착화 및 상태 점검회로 설계)

  • Wonsop Kim;Keehyun Ahn;Minseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • In the recent defence industries, it is required to develop the small and low cost embedded systems for guided missiles. According to the characteristics of guided missiles, the mission is conducted with multiple phases, which include a squib activation phase. By considering the unexpected squib activation, the squib system should be disabled after the launch of a guided missile. Therefore, the squib system needs to include the functions of the safe ignition and status check. This paper presents the squib ignition and status check circuits design for the compact embedded systems in guided missiles. Validation results show that for the functions of the squib ignition and status check, the presented circuits design performs well. The designed circuits also were implemented with various electronic devices and validated by the ground and flight tests.

Development of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 개발)

  • Jang, Seung-Gyo;Kang, Ho-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.332-335
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD.

  • PDF

A Study on the after-end ignition of composite solid propellant (I) (고체 추진기관의 후방점화에 대한 연구(I))

  • Suh, Hyuk;Choi, Young-Seok;Hong, Yoon-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.15-15
    • /
    • 1997
  • 본 연구는 전방점화 방식(the head-end ignition)을 채택하고 있는 composite 고체 추진기관(구룡 1모타)을 이용하여 후방점화 방식(the after-end ignition)에 의한 점화 가능성을 검토하였으며, 점화 방식 차이에 따른 추진기관의 초기 연소거동의 차이점을 고찰하고자 한 실험 연구로서, 후방 점화장치를 설계·제작하여 지상연소시험을 수행하였다. 점화장치는 착화장치(initiation system)와 에너지 방출장치(energy release system), 구조물(Hardware)로 구성되는데, 착화장치는 기존의 K2 squib를 사용하였고, 에너지 방출장치는 FRP튜브에 MTV pellet 점화제를 사용하였으며, 점화기를 후방에 부착시키는 방법으로는 flexible finger 형태의 locking sleeve를 설계하여 노즐목에 고정하였다.

  • PDF

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.

The implementation of the firing control system considering a flight sequence control technique (비행시퀀스제어기법을 적용한 점화통제시스템 구현)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-48
    • /
    • 2008
  • One of main functions of the firing control system applied to a rocket propulsion test has been to provide electric current for ignition of a solid rocket motor. This paper describes the design and implementation of an enhanced firing control system for ground propulsion test that can also control and verify various types of squib events and flight sequences.