• Title/Summary/Keyword: Squeezing behavior

Search Result 23, Processing Time 0.027 seconds

A case study on squeezing behavior of Pinglin tunnel in Taiwan (Taiwan의 Pinglin 터널에서의 Squeezing 거동 분석 사례 연구)

  • Yun, Il-Joong;Yoo, Ki-Cheong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1358-1365
    • /
    • 2010
  • A case study deals with Squeezing behavior under tunneling. Squeezing stands for large time-dependent convergence during tunnel excavation. Squeezing can occur in both rock and soil as long as the particular combination of induced stresses and material properties pushes some zone around the tunnel beyond the limiting shear stress at which creep starts. Under squeezing rock conditions, If the support installation is delayed the rock mass moves into the tunnel and a stress redistribution takes place around it. On the contrary, if deformation is restrained, squeezing will lead to long-term load build-up of rock support. This paper shows analysis case mutually with monitoring and numerical analysis result of squeezing behavior of Pinglin tunnel in Taiwan.

  • PDF

Stability Analysis of Tunnels Excavated in Squeezing Rock Masses (압출 암반내 굴착된 터널의 안정성해석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Refering to the articles "Squeezing rocks in tunnels(Barla, 1995)" and "Tunnelling under squeezing rock conditions(Barla 2002)" this article deals with technologies for design, stability analysis and construction of the tunnel being driven in the squeezing rock mass. The definition of this type of behavior was proposed by ISRM(1994). The identification and quantification of squeezing is given according to both the empirical and semi-empirical methods available to anticipate the potential of squeezing problems in tunnelling. Based on the experiences and lessons learned in recent years, the state of the art in modem construction methods was reported, when dealing with squeezing rock masses by either conventional or mechanical excavation methods. The closed-form solutions available for the analysis of the rock mass response during tunnel excavation are described in terms of the ground characteristic line and with reference to some elasto-plastic models for the given rock mass. Finally numerical methods were used for the simulation of different models and for design analysis of complex excavation and support systems, including three-dimensional conditions in order to quantify the influence of the advancing tunnel face to the deformation behavior of the tunnel.

Dynamic simulation of squeezing flow of ER fluids using parallel processing

  • Kim, Do-Hoon;Chu, Sang-Hyon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.233-240
    • /
    • 1999
  • In order to understand the flow behavior of Electrorheological (ER) fluid, dynamic simulation has been intensively performed for the last decade. When the shear flow is applied, it is easy to carry out the simulation with relatively small number of particles because of the periodic boundary condition. For the squeezing flow, however, it is not easy to apply the periodic boundary condition, and the number of particles needs to be increased to simulate the ER system more realistically. For this reason, the simulation of ER fluid under squeezing flow has been mostly performed with some representative chains or with the approximation that severely restricts the flow geometry to reduce the computational load. In this study, Message Passing Interface (MPI), which is one of the most widely-used parallel processing techniques, has been employed in a dynamic simulation of ER fluid under squeezing flow. As the number of particles used in the simulation could be increased significantly, full domain between the electrodes has been covered. The numerical treatment or the approximation used to reduce the computational load has been evaluated for its validity, and was found to be quite effective. As the number of particles is increased, the fluctuation of the normal stress becomes diminished and the prediction in general was found to be qualitatively In good agreement with the experimental results.

  • PDF

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

The Effect of Squeezing Parameters on the Fabrication Behavior of Phosphor Films (스퀴징 공정변수에 따른 형광체막 성형 거동에 관한 연구)

  • Park, J.Y.;Lee, J.W.;Yoon, G.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • It was confirmed that when phosphor slurry is formed in the cavity of an elastic mold, the pressure distribution of the phosphor slurry varies as a function of the major squeegee parameters (squeegee angle, squeegee velocity, and the viscosity of the phosphor slurry). The higher the slurry viscosity, the faster the squeegee velocity, and the smaller the squeegee angle, the higher the filling completeness of the phosphor slurry. The optimum conditions for complete filling of the phosphor slurry were found when the squeegee angle was between 30 to 45 degrees, squeegee velocity at 40 to 70mm/sec, and the viscosity of the phosphor slurry composite was at 6,556 cps (i.e. phosphor content around 50 wt. %).

STABILITY OF TUNNEL WORKING FACE IN SQUEEZING GROUND

  • 손근종;손준익
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.9-14
    • /
    • 1993
  • Practical solutions that are available today for assessing stability of tunnel working face are largely based on the concept of critical stability ratio. The accuracy of a prediction of the soil behavior in the working face, thus, depends on the ability of the solution to completely and accurately describe the stress fields or kinematics generated by the excavation and the accuracy of the undrained shear strength of the soil introduced in the computation. This paper reviews the selected solutions describing stability of the tunnel heading in squeezing ground, and suggests a reference solution which is established based on comparison of the solutions and field data on stability of tunnel headings in clays. Although dealing with the shear strength determination is an important companion part of the geotechnical prediction for stability of the tunnel heading in clays, this part is beyond the scope of this paper at this time.

  • PDF

Molecular Simulation of Influence of Surface Energy on Water Lubrication (표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구)

  • Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Luo, Binyu;Wang, Jie;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.571-582
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.

Dental Hygienists' Knowledge on Dental Amalgam Mercury and Its Treatment Practice (치과위생사의 치과용 아말감 수은에 대한 지식 및 행위)

  • Shin, Kyoung-Hee;Yang, Ji-Yeon;Kwon, Ho-Keun;Shin, Dong-Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.247-254
    • /
    • 2007
  • This study was performed with the questionnaire survey on mercury knowledge and mercury exposure avoidance behavior, which was conducted among 1076 dental personnel in September, 2004. As for the factors effecting the mercury knowledge, it seems that they are closely related with the personnel's educational backgrounds, and their understandings of causing environmental hazardousness in the dental offices. And also, the factors effecting the behavior of mercury exposure avoidance are strongly connected with the knowledge points on mercury, the knowledge of air states in the dental clinic offices, the use of pincettes and gloves in squeezing, and rubber dam and gloves in mulling, the experience of environmental education on mercury, etc. In the survey, the higher points in mercury knowledge is closely related with the higher points in the behavior of mercury exposure avoidance. Nevertheless, the very fact that the lower points in the behavior among personnel takes on the aspect of the relatively higher points in knowledge on mercury may be understood that the generally acquired knowledge on mercury cannot be the critical factor of the behavior of mercury exposure avoidance.

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.