• Title/Summary/Keyword: Squealer tip

Search Result 17, Processing Time 0.022 seconds

Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade (터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

Comparisons of Aerodynamic Loss Generated by a Squealer-Tip Turbine Rotor Blade with That by a Plane-Tip One (평면팁과 스퀼러팁 터빈 동익의 압력손실 특성 비교)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.161-164
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/e, of 2,0%. This squealer tip has a indent-to-chord ratio, $h_{st}/c$, of 5.5%. The results are compared with those for a plane tip ($h_{st}/c\;=\;0.0%$). The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss Downstream of a Turbine Rotor Blade with a Squealer Tip (스퀄러팁 터빈 동익 하류에서의 3차원 유동 및 압력손실)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.913-920
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/c, of 2.0%. This squealer tip has a indent-to-chord ratio, $h/{st}/c$, of 5.5%. The results are compared with those for a plane tip $(h_{st}/c=0.0%)$. The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

Effect of Blade Tip Geometry on Heat Transfer Coefficients on Gas Turbine Blade Tips and Near Tip Regions (가스터빈 블레이드 끝단 형상에 따른 블레이드 끝단 및 그 주변에서의 열전달 계수 변화)

  • Kwak Jae-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.328-336
    • /
    • 2006
  • Detailed heat transfer coefficient distributions an two. types of gas turbine blade tip, plane tip and squealer tip, were measured using a hue-detection base transient liquid crystals technique.. The heat transfer coefficients an the shroud and near tip regions of the pressure and suction sides af the blade were also. measured. The heat transfer measurements were taken at the three different tip gap clearances af 1.0%, 1.5%, and 2.5% of blade span. Results shaw the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. By using squealer tip, however, the reductions af heat transfer coefficients near the tip regions of the pressure and suction sides were nat remarkable.

Numerical Investigation of Flow and Heat Transfer Characteristics on the Gas Turbine Blade with a Squealer Tip (스퀼러팁을 이용한 가스터빈 내에서의 3차원 유동 및 열전달 특성에 관한 연구)

  • Jung, Jong-Hun;Moon, Young-J.;Kim, Jin-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.159-162
    • /
    • 2008
  • In this paper, a numerical simulation of three-dimensional flow field and heat transfer coefficient distribution are conducted for two types of gas turbine blade with plane and squealer tips. The numerical results show that gas turbine blade with squealer tip considerably changes the flow structures near the tip regions of pressure and suction sides, so the overall heat transfer coefficients on the tip and shroud with squealer tip are lower than those with the plane tip blade. Finally, the effect of tip gap clearance on the flow field and heat transfer characteristics are investigated.

  • PDF

Effects of Squealer Rim Height on Aerodynamic Losses Downstream of a High-Turning Turbine Rotor Blade

  • Lee, Sang-Woo;Chae, Byoung-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.160-167
    • /
    • 2008
  • The effects of squealer rim height on three-dimensional flows and aerodynamic losses downstream of a high-turning turbine rotor blade have been investigated for a typical tip gap-to-chord ratio of h/c=2.0%. The squealer rim height-to-chord ratio is changed to be $h_{st}/c$=0.00(plane tip), 1.37, 2.75, 5.51, and 8.26%. Results show that as $h_{st}/c$ increases, the tip leakage vortex tends to be weakened and the interaction between the tip leakage vortex and the passage vortex becomes less severe. The squealer rim height plays an important role in the reduction of aerodynamic loss when $h_{st}/c{\leq}2.75%$. In the case of $h_{st}/c{\geq}5.51%$, higher squealer rim cannot provide an effective reduction in aerodynamic loss. The aerodynamic loss reduction by increasing $h_{st}/c$ is limited only to the near-tip region within a quarter of the span from the casing wall.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF

Effect of Tip Gap Height on Heat/Mass Transfer over a Cavity Squealer Tip (팁간극높이가 전면스퀼러팁 표면의 열전달 특성에 미치는 영향)

  • Kang, Dong Bum;Moon, Hyun Suk;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • The effect of tip gap height on heat/mass transfer characteristics on the floor of cavity squealer tip has been investigated in a turbine cascade for power generation by employing the naphthalene sublimation technique. The squealer rim height is chosen to be an optimal one of $h_{st}/c$ = 5.51% for the tip gap height-to-chord ratios of h/c = 1.0, 2.0, 3.0 and 4.0%. The results show that heat transfer on the cavity floor is strongly dependent upon the behavior of the cavity flow falling down onto the floor. For lower h/c, the floor heat transfer is influenced by the tip leakage flow falling down along the inner face of the suction-side squealer, whereas the floor heat transfer for higher h/c is augmented mainly due to the impingement of leakage flow on the floor near the leading edge. Compared to the plane tip surface heat transfer, the cavity floor heat transfer is less influenced by h/c. For h/c = 1.0%, the average thermal load is as low as a half of the plane tip surface one, and the difference in the thermal load between the two cases tends to decrease with increasing h/c.

Effects of Pressure-Side Winglet at an Elevation of Tip Surface on the Tip-Leakage Flow and Aerodynamic Loss Downstream of a Turbine Blade Equipped with Pressure-Side Squealer Tip (압력면익단소익이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향)

  • Cheon, Joo Hong;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.645-651
    • /
    • 2016
  • Effects of pressure-side winglet width on the tip leakage flow and aerodynamic loss downstream of a turbine blade with a pressure-side squealer rim have been investigated for the tip gap-to-span ratio of h/s = 1.36%. The pressure-side squealer has a fixed height-to-span ratio of $h_p/s=3.75%$ and the pressure-side winglet, which is installed at an elevation of tip surface, has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results show that with increasing w/p, aerodynamic loss in the passage vortex region decreases, whereas that in the leakage flow region increases. As a result, the mass-averaged loss coefficient all over the measurement plane tends to decrease minutely with the increment of w/p. It is concluded that the pressure-side winglet for the pressure-side squealer tip can hardly contribute to the tip-leakge loss reduction.