• Title/Summary/Keyword: Squeak & Rattle Noise

Search Result 27, Processing Time 0.023 seconds

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Basic principle of BSR (Buzz, Squeak, Rattle) noise according to the generation mechanism (BSR(Buzz, Squeak, Rattle)이음 발생 메커니즘 기본 원리와 시험평가 방법)

  • Choi, Sung uk;Ahn, Sungcheul;Ih, Kang Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.309-316
    • /
    • 2018
  • Various studies have been conducted to improve the BSR (Buzz, Squeak, Rattle) noise generated irregularly while the vehicle is running. In vehicle, When an external force such as vibration or force flows into the contact surface, BSR noise is generated at the contact surfaces of nearby components. In this paper, BSR conceptually explain the kind of noise generation mechanisms and the basic principles of generation, which have been proven by observing and improving noise phenomena in automobiles over the last 10 years. Through this, it is expected that researchers who want to study BSR related improvement research not only in automobiles but also in other industries, It will be able to understand the BSR phenomenon and provide a framework for thinking out improvement ideas and to carry out further research.

An Experimental Approach for Characteristic Rattle Noise Considering the Deterioration Condition of Cockpit Module Materials in the Vehicle (자동차 칵핏 모듈용 시편 소재의 열화 조건을 고려한 이음(Rattle) 발생 특성에 관한 시험적 고찰)

  • Yang, Jeongmin;Yi, Chulhyun;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.796-799
    • /
    • 2014
  • It is treated more seriously than ever as the customer requirements are becoming a high-quality and diversification. Among the various elements to affect customer's evaluation of automobile quality, BSR(buzz, squeak, rattle noise) are considered to be a mostly contributing factor. Rattle Noises in cockpit modules are one of the major concerns mentioned above. Recently, measurements of the BSR noise between the parts that make up the products from the perspective that the structural causes. For structures that make up material has not been any consideration of the BSR noise characteristics. The aim of this study is to clarify the characteristics of noise occurrence in vehicle cockpit module that consist of plastic material after measuring noise by rattle special testing instrument.

  • PDF

Experimental study to investigate the structural integrity of welded vehicle structure for BSR (Buzz, Squeak, Rattle) noise by vibration measurement (진동 특성을 이용한 접합된 차량 구조의 BSR(Buzz, Squeak, Rattle) 소음 강건성 관측에 대한 실험연구)

  • Kwak, Yunsang;Lee, Jongho;Park, Junhong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, the vibration test method to nondestructively evaluate the possibility of vehicle BSR (Buzz, Squeak, Rattle) noise generation in spot-welded structures was proposed. The weld quality was predicted by analyzing the local vibration transmission characteristics for the beam-shaped structure attached to testing spots. The bending stiffness was evaluated from the identified vibration properties. From the change in the stiffness, the weld quality was evaluated. For verification of the proposed method, the welded specimens were fabricated with partial changes in welding parameters. The local vibration transfers were measured. The frequency bands affected by the weld quality was identified. The capability of evaluating the welding parameters including defect position and quality variations was investigated. The proposed method enables fast quality evaluation to minimize the possibility of BSR noise generation in the manufactured vehicle.

Experimental Evaluation of Buzz, Squeak and Rattle Noise of Vehicle Doors and Its Prevention (자동차 도어의 BSR 소음의 실험적 평가와 개선)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.617-621
    • /
    • 2007
  • Recent advances in automotive noise control engineering have reduced major sound sources in the vehicle, customers perceive Buzz, Squeak and Rattle (BSR) as one of important indicators of vehicle quality and durability. As the long-term goal, we expect to establish the integrated design cycle for the reduction of BSR noise in the early stage of development, which consist of design, prediction, and evaluation procedures. This is possible only with great bulk of experimental data for BSR noise. In this paper, BSR noise is experimentally identified for vehicle doors, which have been traditionally considered as one of main sources of BSR noise. Based on this result, we proposed method for the prevention of BSR noise in the vehicle doors.

  • PDF

Experimental Evaluation of Buzz, Squeak and Rattle Noise of Vehicle Doors and Its Prevention (자동차 도어의 BSR 소음의 실험적 평가와 개선)

  • Shin, Su-Hyun;Jung, Sung-Soo;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1217-1222
    • /
    • 2007
  • With recent advance in automotive noise control engineering reducing major sound sources in the vehicle, customers perceive Buzz, Squeak and Rattle (BSR) as one of important indicators of vehicle quality and durability. As the long-term goal, we expect to establish the integrated design cycle for the reduction of the BSR noise in the early stage of vehicle development. which consist of design, prediction and evaluation procedures. This is possible only with great bulk of experimental data for BSR noise. In this paper, BSR noise is experimentally identified for vehicle doors, which have been traditionally considered as one of main sources of BSR noise. Based on this result, we proposed systematic method for the prevention of BSR noise in the vehicle doors.

The Experimental Study on the Squeak & Rattle Noise Changes with Environment Test of Cluster (계기판의 환경 시험 후 소음 양상에 관한 시험적 연구)

  • Kim, Byung-Jim;Moon, Nam-Su;Park, Jin-Sung;Park, Hyun-Woo;Kim, Moon-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.283-287
    • /
    • 2012
  • Recently, Most of diverse noise of vehicles has decreased competitively according to development of the automotive manufacturing technology. Especially, Passenger car manufacturers has been conducting buzz, squeak and rattle(BSR) noise test as a method of the noise evaluation tests to reduce an unpleasant sound from interior parts on the driving the car. The purpose of this paper is to confirm the change of the noise generated in the product after the reliability evaluation. Here by the BSR test procedure used the test regulation of 'G' company.

  • PDF

Evaluation of BSR Noise Properties of Instrument Panel in a Vehicle (자동차 계기판 BSR 소음특성 평가)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Kim, Duck-Whan;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Among various elements to affect customer's evaluation of vehicle quality, BSR(Buzz, Squeak, Rattle) are considered to be a mostly contributing factor. In this paper, we provide the test method which can be used to reduce the BSR noise of instrument panel in a vehicle. First, potential source regions of the instrument panel for BSR are localized by using the vibration-excitor and near-acoustic field visualization system. Then, subjective evaluation of BSR noise from the detected potential noise source regions is made with the Zwicker's loudness and time-varying loudness methods. This illustrative analysis reveals that current experimental methods can be used as a test procedure to systematically tackle BSR issues in early stage of the vehicle development cycle, which can result in the reduction of the production cost.

Development of Rattle and Squeak Detection Methodology Considering Characteristics of Road Vibration Input (차량 부품의 노면 가진 특성을 고려한 래틀과 스퀵 현상 검출 방법의 개발)

  • Lyu, Su Jung;Jun, In Ki;Choi, Jae Min;Lee, Won Ku;Woo, Jae Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.679-683
    • /
    • 2013
  • BSR noise emerges in a vehicle as a result of road vibrations, engine vibrations, and speaker vibrations. BSR noise occurs with an irregular impact or stick slip friction phenomenon as the influence of the resonance mode when the vibration input load is transferred along poor joint and contacting pairs of the system. A sub-structure method of finite element analysis is required to detect impacts and slip in the full vehicle model. This study presents a method for sub-structure modeling and a rattle and squeak detection methodology that considers the characteristics of road vibration inputs.