• Title/Summary/Keyword: Square duct

Search Result 174, Processing Time 0.028 seconds

Study on the Similarity of Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Squared Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관내에서의 층류 유동의 유사성 비교)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1683-1691
    • /
    • 2000
  • In this study, it is numerically revealed that the secondary flow due to the Coriolls force in a straight duct rotating about an axis perpendicular to that of the duct is analogous to that caused by the centrifugal force in a stationary curved duct. Dimensionless parameters $K_{LR}=Re/\sqrt{Ro}$ and Rossby number in a rotating straight duct were used as a set corresponding to Dean number and curvature ratio in a stationary curved duct. When the value of Rossby number and curvature ratio is large, it is shown that the flow field satisfies the `asymptotic invariance property`, that is, there are strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and Dean number.

Characteristics of Heat Transfer in the Channel with Twisted Tape

  • Ahn, Soo-Whan;Kang, Ho-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The rib height-to-channel hydraulic diameter ratio, $e/D_h$, is kept at 0.067 and test section length-to-hydraulic diameter ratio, $L/D_h$ is 30. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite ribbed walls of the square channel. Results show that the twisted tape with interrupted ribs provides a higher overall heat transfer performance over the twisted tape with no ribs.

Effects of Swirl Flow Generated by Twisted Tape on Heat Transfer and Friction Factor in a Square Duct (꼬임식 테이프가 설치된 사각 덕트에서 스월유동이 미치는 열전달과 마찰계수)

  • Kang, Ho-Keun;Ary, Bachtiar-Krishna-Putra;Ahn, Soo-Whan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.117-120
    • /
    • 2008
  • Numerical simulations and experiment of a hydrodynamic and thermally developed turbulent flow through square ducts (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors. Turbulent swirl flows having Reynolds numbers ranging from 8,900 to 29,000, a rib height-to-channel hydraulic diameter(e/D$_h$) of 0.067, and a length-to-hydraulic diameter(L/D$_h$) of 30, are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape has 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Each wall is composed of isolated aluminum sections, and two cases of surface heating are set. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and square ducts with twisted tape inserts plus interrupted ribs produces the best overall transfer performance.

  • PDF

A Study on the improvement of the audio acoustic characteristics by the condition of the duct design (덕트의 설계 조건에 따른 오디오 음향환경 개선에 관한 연구)

  • 김대근
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.70-73
    • /
    • 2000
  • In this paper we conducted research about the speaker's acoustic characteristics by the condition of the duct. It is expanding the bass ton play frequency as interfere two frequencies each other which originate from the speaker's back and front side using duct as attach the duct of round shaped or square at the encloser. This is not making of bass ton range using interference,. The structure of the duct which using the experiment is round shape. And we confirmed that can expand the limit of bass ton play as compare the actual experimental wave that after simulation of play frequency range as lenth change

  • PDF

A Study on the Flow Characteristics of developing transitional Steady Flows in the Entrance Region of a Curved Duct (곡관덕트의 입구영역에서 천이정상유동의 유동특성에 관한 연구)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In this paper an experimenatal investigation of characteristics of developing ransitional steady flows in a square-sectional $180^{\circ}$ curved duct is presented, The experimental study is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Dopper Velocimeter(LDV) system. The flow development is found to depend upon Dean number and curvature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows becomes strong from $120^{\circ}$ of bended angle on the duct. The entrance length of transitional steady flow is obtained to $120^{\circ}$ of bended angle of the duct in this experimental conditions.

  • PDF

A Study on the Reduction of Entry Loss by Inner Structure in Square Hood in Industrial Ventilation System (산업환기시설에서 사각형 후드의 내부 설치에 의한 유입손실 감소에 관한 연구)

  • Bae, Hyun-Joo;Yang, Won-Ho;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.27-34
    • /
    • 2003
  • An objective of local exhaust hood design is to design the hood to operate as efficiently as possible. The greatest loss normally occurs at the entrance to the duct, due to the vena contracta in the throat of the duct. This can be accomplished by minimizing the loss that results from the vena contracta. There have been little studied to be cost-effective approach as installing simple instrument inside the throat of the hood. The aims of this paper were to minimize entry loss using inner square, and to measure the effect of inner square when installed inside hood throat. The results of this study were as follows; First, the magnitude of vena contracta could be considered as the difference between direct measured velocity and calculated velocity, which is from Bernoulli theory. In circle hood, calculated velocity and direct measured velocity were 10.7m/sec and 10.3n/sec, respectively. And the calculated velocity and direct measured velocity in square hood were 7.7m./sec and 6.5m/sec, respectively. Second, effect of inner square by width was carried out. The widths of inner square were L/1(18cm), L/2(9cm), L/3(6cm) and L/6(3cm). In case inner square was installed with 3cm width, the entry of coefficient was 0.93, comparing with 0.85 of entry of coefficient of general hood. Third, effect of inner square by distance from hood inside surface to inner square was carried out. The distances were L/3(6cm), L/6(3cm), L/9(2cm) and L/l8(1cm). In case the distance was 3cm the best efficiency was shown (Ce= 0.93). Fourth, effect of inner square by location from hood entry to duct inside was carried out. The locations of inner square were entry(0cm), L/6(3cm), L/3(6cm), L/2(9cm) and L/l(12cm). In case the location was 0cm, 3cm and 6cm the entry of coefficients were 0.93, 0.92 and 0.90, respectively.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

A Study on Velocity Profiles and Critical Dean Number of Developing Transitional Unsteady Flows in a Curved Duct (곡관덕트의 입구영역에서 천이비정상유동의 속도분포와 임계딘수에 관한연구)

  • 이행남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.862-870
    • /
    • 1998
  • In this paper an experimental investigation of characteristics of developing transitional unsteady flows in a square-sectional 180。 curved duct are presented. The experimental study using air is carried out to measure axial velocity profiles secondary flow velocity profiles and entrance length by using Laser Do ppler Velocimeter(LDV) system. The flow development is found to depend upon Dean number dimensionless angular frequency velocity amplitude ration and cur-vature ratio. Of special interest is the secondary flow generated by centrifugal effects in the plane of the cross-section of the duct. The secondary flows are strong and complicate at entrance region. The entrance length of transitional pulsating flow is obtained to 120。 of bended angle of duct in this experimental conditions.

  • PDF

Study on the Natural Convection Heat Transfer Characteristics in the Air Duct

  • Kim, Y.K.;Lee, Y.B.;Park, S.K.;J.S. Hwang;H.Y. Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.451-456
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/$m^2$ by the natural convection from the outer wall to the air. And also the temperature distributions in the air duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin's and Sieger's correlations.

  • PDF

Turbulence Enhancement by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.246-254
    • /
    • 2002
  • Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipments is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO$_2$saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer.