• Title/Summary/Keyword: Square cup

검색결과 99건 처리시간 0.02초

피라미드 코어를 가진 샌드위치 판재의 성형해석기술 개발 (Development of Analysis Method for Forming of Sandwich Sheet with Pyramid Core)

  • 임성진;김종호;성대용;양동열;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.266-267
    • /
    • 2007
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. In order to simulate forming of sandwich sheet with pyramid core, an effective simulation method is required. Compared to the expensive model using solid elements, cost effective model using simplified elements such as shells and beams is developed. By comparing two models in terms of the cost and accuracy for unit cell deformation, a developed model shows some advantages over the model using solid elements. Evolution of two kind of forming limits, face buckling and core buckling are successfully expressed by developed model. Developed model is also applied in the simulation of square cup drawing and L-type bending. The corresponding experiments are carried out. Deformation shape and wrinkling behavior are compared and discussed. It is found that simulation results using a developed model are in good agreement with experiments.

  • PDF

회전 인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형한계 연구 (A Study of forming limit on rotational incremental forming of magnesium alloy sheet)

  • 박진기;배문기;유봉선;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.456-461
    • /
    • 2008
  • Being a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed (HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. However, we confirmed that using rotational incremental forming magnesium alloy sheets were formed without any heating at previous study. In this study, at the forming of square cup using rotational incremental sheet forming, the strain distributions were obtained and it was compared with forming limit curve at neck (FLCN). Also, forming limit curves at fracture (FLCF) of magnesium alloy sheets were obtained at elevated temperature and it was compared with the strain distribution of square cup of magnesium alloy sheet. In this study, we confirmed that conventional forming limit curves can not predict rotational incremental forming.

  • PDF

Al-Cu-Zr 합금 초소성 성형품의 기계적 성질 (mechanical properties of Al-Cu-Zr alloy parts by superplastic forming)

  • 이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

Al합금의 사각용기 딥드로잉시 주름의 거동에 관한 연구 (A Study on the Behavior of Wrinkling in the Square Cup Deep Drawing of Al Alloy)

  • 고대림;정동원
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.276-282
    • /
    • 2009
  • Wrinkling in the flange and wall of a deep-drawn part is one of the major defects in sheet metal processes. Wrinkling is influenced by many factors, such as material properties, shape of the body, forming conditions, stress state and thickness, etc. It is difficult to analyze the wrinkling initiation and growth according to the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation even though small deviation of factors. In this study, the influence of wrinkling parameters, such as material properties (Al1050, Al5052), the blank holding force and the drawing depth on the wrinkling initiation and growth is investigated by using the experimental method and the dynamic explicit finite element analysis. From the results, it is shown that the dynamic explicit finite element method can be used effectively to prevent the wrinkling problems advancely in the deep drawing process. Also, there is a good agreement between the experimental result and the dynamic explicit finite element analysis.

마그네슘 합금 AZ31 판재의 온간 사각컵 딥드로잉 성형성의 유한요소 해석 (Finite-Element Analysis of Formability in Warm Square Cup Deep Drawing of Magnesium Alloy AZ31 Sheet)

  • 김흥규;이위로;홍석관;한병기;김종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.122-125
    • /
    • 2005
  • Magnesium alloys are expected to be widely used for the parts of structural and electronic applications due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

  • PDF

A Study of Ability of a Rectangular Shell Deep Drawing by Finite Element Program

  • Kumjing, Sanya;Somphasong, Papon
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.68-77
    • /
    • 2015
  • This study was the use of the finite element method in the deep drawing process of a rectangular shell cup. The aim was to analyse the equivalent strain in the workpiece and to find out what happened to the disc blank sheet before the forming by stamping. The rectangular shell cup was $24{\times}30{\times}20$ mm. and made of 2mm.thick SUS 403 and SUS 304 stainless steel. There were 3 types of blank sheets: 1) square sheet 2) 45 degree angled edge cutting sheet 3) circular sheet. It was found out that the drawing up with the use of 3 types of blank sheet made of SUS 304 stainless steel had no risk in the workpiece. For the stamping of the rectangular shell that used a square sheet made of SUS 403 stainless steel, it was found out that there was no risk in the work piece, but with the use of 45 degree angled edge cutting sheet or round sheet, the work piece had a risk to be damaged.

AZ31 합금 성형에서의 열전달을 고려한 유한요소해석 (Finite element analysis considering heat transfer in sheet metal forming of AZ31)

  • 김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2005
  • In this work, the influences of tool temperature on the formability of AZ31 sheet material in warm deep drawing processes of square cup were investigated. Deep drawing tests under different tool temperatures for magnesium alloy sheet at elevated temperature $250^{\circ}C$, where AZ31 sheet shows a good formability, and FE analyses were carried out. The successfully formed part without any defects was obtained when temperature of tool was over $100^{\circ}C$ while the fracture was occurred at the corner of the square cup below $100^{\circ}C$. It is shown that lower temperature of tool than that of magnesium sheet causes the temperature drop of the material by heat transfer and thus Interrupts the dynamic recrystallization of it. Therefore, in order to obtain successful part of magnesium alloys, it is necessary that the tool temperature is limited to the same or slightly lower temperature than sheet material.

  • PDF

박판금속 성형공정에서의 블랭크 설계및 변형률 예측 (Blank Design and Strain Prediction in Sheete Metal Forming Process)

  • 이충호;허훈
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.

딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구 (Experimental Study on the Parameters Affecting Deep Drawing Process)

  • 정동원;양형일;이승훈
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.61-65
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which Is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF