• 제목/요약/키워드: Square Root

검색결과 2,665건 처리시간 0.029초

교대근무자의 근무시간과 대사증후군의 관계에서 식습관, 영양섭취상태, 일상생활의 매개효과 분석 : 6기 국민건강영양조사 (2013 ~ 2015) 데이터 이용 (Mediation analysis of dietary habits, nutrient intakes, daily life in the relationship between working hours of Korean shift workers and metabolic syndrome : the sixth (2013 ~ 2015) Korea National Health and Nutrition Examination Survey)

  • 김윤아;김현희;임동훈
    • Journal of Nutrition and Health
    • /
    • 제51권6호
    • /
    • pp.567-579
    • /
    • 2018
  • 본 연구는 국민건강영양조사 자료를 이용하여 교대 근무자의 근무시간이 대사증후군의 유병률에 영향을 미치는 요인을 파악하는데 대사증후군의 위험군으로 식습관, 영양섭취상태, 일상생활 관련 특성의 관점에서 관리하는 데 도움을 주고자 진행되었다. 본 연구의 분석결과는 다음과 같다. 첫째, 교대 근무자의 근무시간과 식습관 관계는 직접관계 (direct causality)가 있지 않으나 일상생활과는 직접관계를 갖는 것으로 나타났다. 또한, 식습관과 영영 상태, 대사증후군과는 직접관계가 있지 않은 것으로 나타났고 영양섭취상태와 대사증후군과는 직접관계가 없으나 일상생활과는 직접 인과관계가 있는 것으로 나타났다. 둘째, 교대 근무자의 근무시간과 대사증후군 관계에서 각각 식습관, 일상생활의 개별 매개 효과 (specific mediator effect)는 통계적으로 유의한 것으로 나타났으나, 식습관과 영양섭취상태의 다중매개효과 (multiple mediator effect), 그리고 식습관, 영양섭취상태, 일상생활의 다중매개 효과는 통계적으로 유의하지 않는 것으로 나타났다. 셋째, 교대 근무자의 근무시간이 배제된 상태에서 영양섭취상태, 일상생활 그리고 대사증후군 간의 관계에서 영양섭취상태와 일상생활 그리고 일상생활과 대사증후군과는 직접 인과관계는 없으나 일상생활에 의한 매개 효과는 통계적으로 유의한 것으로 나타났다. 넷째, 교대 근무자의 근무시간과 식습관은 대사증후군에 대해 전체 총 효과 (total effect)를 가진 것으로 나타났으나 영양섭취상태와 일상생활은 대사증후군에 대해 총 효과를 갖고 있지 않은 것으로 나타났다. 결론적으로, 구조방정식 모델을 사용하여 교대 근무자의 교대시간은 그들의 일상생활 또는 식습관에 영향을 주고 대사증후군 유병률과 관련성이 있음을 밝혔다.

Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가 (Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue)

  • 오혜경;손상준;박장필;이제희
    • 대한방사선치료학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2019
  • 목 적: 본 연구에서는 lung SBRT가 적용되는 작은 계획 표적 용적(PTV)에 처방 선량이 정확히 전달되는지 실험을 통하여 알아보고자 한다. 치료계획 시스템에서 계산된 선량분포와 실험을 통하여 필름에 측정된 선량분포를 비교 분석하여 정확성을 평가해보고, 폐 실질 조직 내에서 계획 표적 용적의 margin 유용성 평가를 하고자 한다. 대상 및 방법: CT 촬영으로 얻은 Rando phantom 3D 영상의 우측 폐에 직경 2, 3, 4, 5 cm인 가상의 구 표적을 만들어 계획 표적 용적에 처방선량의 95 %가 전달될 수 있도록 6MV-FFF VMAT Arc 2개로 치료계획을 수립하였으며, Eclipse TPS와 동일한 위치에서 선량 비교하기 위해서, 필름을 가상 표적의 회전중심점에 횡단면 방향으로 삽입하고 방사선을 조사하였다. Dose profile을 Eclipse에서 획득하고, 측정값과 계산값을 비교하기 위해 Center point에서의 절대 선량값을 계산하였으며, off-axis 선량 분포를 얻어 RMSE, Coverage ratio 등 비교 인자를 통해 상대 선량 및 선량분포를 비교 분석하였다. 결 과: 직경 2, 3, 4, 5 cm 크기별로 center point에서의 %difference 값은 직경 2 cm에서 -4.65 %로 가장 차이가 큰 값을 보였고, 직경 5 cm일 때 -1.46 %로 가장 차이가 작은 값을 보였다. RMSE값은 직경 2 cm일 때 3.43으로 가장 큰 값을 보였고. 직경 5 cm일 때 2.85로써 가장 작은 값을 보였다. 표적 커버리지를 비교하기 위해 처방선량 95 %가 들어가는 용적의 길이($D_{95}$)를 구하였고, 직경 2 cm일 때, TPS와 필름에서 각각 2.02 cm, 1.86 cm로 커버리지 비율이 92 %로 나타났고 가장 큰 차이를 보였다. 또한 계획 표적 용적 100% 이내에 들어가는 평균선량($D_{mean}$)을 비교했을 때, 직경 2 cm 인 경우 측정 평균선량이 95.72 %로 가장 낮은 값을 보였다. 결 론: 본 연구에서는 실험을 통하여 작은 계획 표적 용적에 처방 선량이 충분히 전달되는지 알아보았다. 실험 결과 모든 비교 인자에서 직경 2 cm인 용적이 가장 큰 차이를 보였다. 이는 표적 용적 중심에서의 선량 감소가 주요인이라 판단된다. 따라서 선량계산 시스템에서 저밀도 조직 내의 작은 용적 치료 계획시 2 mm 이상의 마진(margin)을 더 두거나, 치료 계획 최적화(optimization)시 최대선량을 제한하지 않는 방법으로 표적 내 중심 선량을 높일 수 있을 것이라 사료된다.

머신러닝 기법의 산림 총일차생산성 예측 모델 비교 (Predicting Forest Gross Primary Production Using Machine Learning Algorithms)

  • 이보라;장근창;김은숙;강민석;천정화;임종환
    • 한국농림기상학회지
    • /
    • 제21권1호
    • /
    • pp.29-41
    • /
    • 2019
  • 산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.

선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정 (Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations)

  • 정지훈;손무빈;이용관;김성준
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.515-530
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 다중선형회귀모형을 활용하여 금강 유역 상류에 위치한 용담댐 유역의 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 6일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 사용하여 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. 토양수분 산정 모형의 검증자료로 TDR로 측정된 6개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행 강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. 다중선형회귀모형은 전체 기간 및 계절별로 나누어 모의하였으며, 독립변수의 증감에 따른 상관성 분석을 진행하였다. 산정된 토양수분은 결정계수(R2)와 평균제곱근오차(RMSE)를 활용하여 검증하였다. 초지 지역에서 후방산란계수만을 이용한 토양 수분 산정 결과 R2가 0.13, RMSE가 4.83%으로 나타났으며 선행강우를 5일까지 사용했을 경우 R2가 0.37, RMSE가 4.11%로 상관성이 상승하는 모습을 보였다. 이 때, 토양수분의 계절별 변동성과 감소 패턴의 반영을 위해 무강우누적일수의 적용과 계절별 회귀식을 작성한 결과 R2가 0.69, RMSE가 2.88%로 상관성이 크게 상승하였다. SAR 기반 토양수분 추정 시 선행강우 및 무강우누적일수의 활용이 효과적이었다.

SWAT을 이용한 유역간 물이동량에 따른 영산강유역의 하천 유량 및 수질 변동 분석 (Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT)

  • 김용원;이지완;우소영;김성준
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1081-1095
    • /
    • 2020
  • 본 연구는 SWAT (Soil and Water Assessment Tool)을 이용하여 섬진강유역 주암댐에서 영산강유역(3,371.4 km2)으로의 유역간 물이동량조절에 따른 영산강의 하천유량 및 수질변동을 분석하였다. 이를 위해, SWAT의 Inlet 기능을 이용한 물이동과 영산강유역 하수처리장들의 방류량 자료를 고려한 SWAT을 구축하여, 마륵(MR) 수위관측소와 다기능보 2개(승촌보;SCW, 죽산보;JSW) 그리고 3개의 수질관측소(광주;GJ2, 나주;NJ, 함평;HP)를 대상으로 총 14년(2005~2018) 동안의 유량과 수질을 검보정하였다. 3개 지점 하천유량의 검보정 결과, R2, NSE, RMSE, PBIAS는 각각 0.69 ~ 0.81, 0.61 ~ 0.70, 1.34 ~ 2.60 mm/day, -8.3% ~ +7.6%였으며, 수질은 SS, T-N 및 T-P 각각 R2가 각각 0.69 ~ 0.81, 0.61 ~ 0.70, 0.54 ~ 0.63의 범위를 보였다. 물이동량을 고려한 영산강유역의 하천유량은 평균 12.0 m3/sec로 나타났으며, SS, T-N 및 T-P의 평균 농도는 각각 110.5 mg/L, 4.4 mg/L, 0.18 mg/L 이었다. 물이동량의 변화에 따른 영산강의 유량과 수질의 변화를 보기 위하여, 물이동량의 증가(110%, 130%, 150%)와 감소(90%, 70%, 50%)를 적용하였다. 대표적으로 증가시나리오 130%의 경우, 하천유량과 SS의 농도는 각각 12.94 m3/sec (+7.8%), 111.26 mg/L (+0.7%) 증가, T-N과 T-P 농도는 각각 4.17 mg/L (-5.2%), 0.165 mg/L (-8.3%)로 감소하였다. 반면 감소시나리오 70%를 적용하였을 때, 하천유량과 SS의 농도는 각각 11.07 m3/sec (-7.8%), 109.74 mg/L (-0.7%)로 감소, T-N과 T-P 농도는 각각 4.68 mg/L (+6.4%), 0.199 mg/L (+10.6%) 증가하였다.

딥러닝을 이용한 벼 도복 면적 추정 (Estimation of the Lodging Area in Rice Using Deep Learning)

  • 반호영;백재경;상완규;김준환;서명철
    • 한국작물학회지
    • /
    • 제66권2호
    • /
    • pp.105-111
    • /
    • 2021
  • 해마다, 강한 바람을 동반한 태풍 및 집중호우로 인해 벼도복이 발생하고 있으며, 이삭이 여무는 등숙기에 도복으로 인한 수발아와 관련된 피해를 발생시키고 있다. 따라서,신속한 피해 대응을 위해 신속한 벼 도복 피해 면적 산정은 필수적이다. 벼 도복과 관련된 이미지들은 도복이 발생된 김제, 부안, 군산일대에서 드론을 이용하여 수집하였고, 수집한 이미지들을 128 × 128 픽셀로 분할하였다. 벼 도복을 예측하기 위해 이미지 기반 딥 러닝 모델인 CNN을 이용하였다. 분할한 이미지들은 도복 이미지(lodging)와 정상 이미지(non-lodging) 2가지로 라벨로 분류하였고, 자료들은 학습을 위한 training-set과 검증을 위한 vali-se을 8:2의 비율로 구분하였다. CNN의 층을 간단하게 구성하여, 3개의 optimizer (Adam, Rmsprop, and SGD)로 모델을 학습하였다. 벼 도복 면적 평가는 training-set과 vali-set에 포함되지 않은 자료를 이용하였으며, 이미지들을 methshape 프로그램으로 전체 농지로 결합하여 총 3개의 농지를 평가하였다. 도복 면적 추정은 필지 전체의 이미지를 모델의 학습 입력 크기(128 × 128)로 분할하여 학습된 CNN 모델로 각각 예측한 후, 전체 분할 이미지 개수 대비 도복 이미지 개수의 비율을 전체 농지의 면적에 곱하여 산정하였다. training-set과 vali-set에 대한 학습 결과, 3개의 optimizer 모두 학습이 진행됨에 따라 정확도가 높아졌으며, 0.919 이상의 높은 정확도를 보였다. 평가를 위한 3개의 농지에 대한 결과는 모든 optimizer에서 높은 정확도를 보였으며, Adam이 가장 높은 정확도를 보였다(RMSE: 52.80 m2, NRMSE: 2.73%). 따라서 딥 러닝을 이용하여 신속하게 벼 도복 면적을 추정할 수 있을 것으로 예상된다.

다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법 (Physical Offset of UAVs Calibration Method for Multi-sensor Fusion)

  • 김철욱;임평채;지준화;김태정;이수암
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1125-1139
    • /
    • 2022
  • 무인항공기에 부착된 위성 항법 시스템/관성 측정 센서(global positioning system/inertial measurement unit, GPS/IMU)와 관측 센서 사이에는 물리적인 위치와 자세 오차가 존재한다. 해당 물리 오프셋으로 인해, 관측 데이터는 비행 방향에 따라 서로 위치가 어긋나는 이격 오차가 발생한다. 특히나, 다중 센서를 활용하여 데이터를 취득하는 다중 센서 무인항공기의 경우, 관측 센서가 변경될 때마다 고액의 비용을 지불하고 외산 소프트웨어 의존하여 물리 오프셋을 조정하고 있는 실정이다. 본 연구에서는 다중 센서에 적용 가능한 초기 센서 모델식을 수립하고 물리 오프셋 추정 방법을 제안한다. 제안된 방안은 크게 3가지 단계로 구성된다. 먼저, 직접지리 참조를 위한 회전 행렬 정의 및 초기 센서 모델식을 수립한다. 다음으로, 지상기준점과 관측 센서에서 취득된 데이터 간의 대응점을 추출하여 물리 오프셋 추정을 위한 관측방정식을 수립한다. 마지막으로, 관측 자료를 기반으로 물리 오프셋을 추정하고, 추정된 파라미터를 초기 센서 모델식에 적용한다. 전주, 인천, 알래스카, 노르웨이 지역에서 취득된 데이터셋에 적용한 결과, 4개 지역 모두 물리 오프셋 적용 전에 발생되던 영상 접합부의 이격 오차가 물리 오프셋을 적용 후 제거되는 것을 확인했다. 인천 지역의 지상기준점 대비 절대 위치 정확도를 분석한 결과, 초분광 영상의 경우, X, Y 방향으로 약 0.12 m 위치 편차를 보였으며, 라이다 포인트 클라우드의 경우 약 0.03 m의 위치 편차를 보여줬다. 더 나아가 영상 내 특징점에 대하여 초분광, 라이다 데이터의 상대 위치 정확도를 분석한 결과, 센서 데이터 간의 위치 편차가 약 0.07 m인 것을 확인했다. 따라서, 제안된 물리 오프셋 추정 및 적용을 통해 별도 기준점 없이 정밀한 데이터 매핑이 가능한 직접 지리 참조가 가능하다는 것을 확인했으며, 다중 센서를 부착한 무인항공기에서 취득된 센서 데이터 간의 융합 가능성에 대해 확인하였다. 본 연구를 통해 독자적인 물리 파라미터 추정 기술 보유를 통한 경제적 비용 절감 효과 및 관측 조건에 따른 유연한 다중 센서 플랫폼 시스템 운용을 기대한다.

Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑 (Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network)

  • 공성현;백원경;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1723-1735
    • /
    • 2022
  • 산사태는 가장 널리 퍼진 자연재해 중 하나로 인명 및 재산피해 뿐만 아니라 범 국가적 차원의 피해를 유발할 수 있기 때문에 효과적인 예측 및 예방이 필수적이다. 높은 정확도를 갖는 산사태 취약성도를 제작하려는 연구는 꾸준히 진행되고 있으며 다양한 모델이 산사태 취약성 분석에 적용되어 왔다. 빈도비 모델, logistic regression 모델, ensembles 모델, 인공신경망 등의 모델과 같이 픽셀기반 머신러닝 모델들이 주로 적용되어 왔고 최근 연구에서는 커널기반의 합성곱신경망 기법이 효과적이라는 사실과 함께 입력자료의 공간적 특성이 산사태 취약성 매핑의 정확도에 중요한 영향을 미친다는 사실이 알려졌다. 이러한 이유로 본 연구에서는 픽셀기반 deep neural network (DNN) 모델과 패치기반 convolutional neural network (CNN) 모델을 이용하여 산사태 취약성을 분석하는 것을 목적으로 한다. 연구지역은 산사태 발생 빈도가 높고 피해가 큰 인제, 강릉, 평창을 포함한 강원도 지역으로 설정하였고, 산사태 관련인자로는 경사도, 곡률, 하천강도지수, 지형습윤지수, 지형위치 지수, 임상경급, 임상영급, 암상, 토지이용, 유효토심, 토양모재, 선구조 밀도, 단층 밀도, 정규식생지수, 정규수분지수의 15개 데이터를 이용하였다. 데이터 전처리 과정을 통해 산사태관련인자를 공간데이터베이스로 구축하였으며 DNN, CNN 모델을 이용하여 산사태 취약성도를 작성하였다. 정량적인 지표를 통해 모델과 산사태 취약성도에 대한 검증을 진행하였으며 검증결과 패치기반의 CNN 모델에서 픽셀기반의 DNN 모델에 비해 3.4% 향상된 성능을 보였다. 본 연구의 결과는 산사태를 예측하는데 사용될 수 있고 토지 이용 정책 및 산사태 관리에 관한 정책 수립에 있어 기초자료 역할을 할 수 있을 것으로 기대된다.

한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인 (GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula)

  • 김희영;박경애;곽병대;주희태;이준수
    • 한국지구과학회지
    • /
    • 제43권5호
    • /
    • pp.604-617
    • /
    • 2022
  • 해수면온도는 해양-대기의 현상을 이해하고 기후변화를 예측하기 위해 사용되는 중요한 변수이다. 마이크로파 영역의 인공위성 원격탐사는 구름과 강수와 같은 기상현상 위성 관측 측기의 경로에 존재하더라도 해수면온도 획득을 가능하게 한다. 따라서 마이크로파 해수면온도의 높은 활용도를 고려하면 위성 해수면온도를 정확도를 지속적으로 검증하고 오차 특성을 분석할 필요가 있다. 본 연구에서는 2014년 3월부터 2021년 12월까지 약 8년 동안 Global Precipitation Measurement (GPM)/GPM Microwave Imager (GMI) 마이크로파 해수면온도의 정확도를 표층 뜰개 부이 수온 자료를 사용하여 검증하였다. GMI 해수면온도는 실측 해수면온도에 비해 0.09 K의 편차와 0.97 K의 평균 제곱근 오차를 보였고, 이는 기존 연구 결과에 비해 다소 높게 나타났다. 이외에도 GMI 해수면 온도의 오차 특성은 위도, 연안과의 거리, 해상풍 및 수증기량과 같은 환경적 요인과 관련성이 있다. 오차는 육지에서 300 km 이내의 거리에서 해안 지역에 가까운 지역과 고위도 지역에서 증가하는 경향이 있다. 또한 낮에는 약한 풍속(<6 m s-1), 밤에는 강한 풍속(>10 m s-1) 범위에서 상대적으로 높은 오차가 나타났다. 대기 수증기는 30 mm 미만의 매우 낮은 범위 또는 60 mm보다 큰 매우 높은 범위에서 높은 해수면온도 차이에 기여했다. 이러한 오차들은 저수온에서 GMI 자료의 정확도가 떨어지는 기존 연구와 일치하며, 연안으로부터의 거리, 풍속, 수증기량에 의한 오차의 경우 육지와 해양의 방사율 차이 및 바람에 의한 해수면 거칠기 변화, 수증기의 마이크로파 대기 흡수에서 기인하는 것으로 추정된다. 이는 한반도 주변해에서 마이크로파 위성 계산 SST를 보다 광범위하게 활용하기 위해서는 GMI 해수면온도 오차의 특성에 대한 이해가 필요함을 시사한다.

다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산 (Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence)

  • 정시훈;추민기;임정호;조동진
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.707-723
    • /
    • 2022
  • 위성기반 해수면온도는 광역 모니터링이 가능한 장점이 있지만, 다양한 환경적 그리고 기계적 이유로 인한 시공간적 자료공백이 발생한다. 자료공백으로 인한 활용성의 한계가 있으므로, 공백이 없는 자료 생산이 필수적이다. 따라서 본 연구에서는 한반도 주변 해역에 대해 극궤도와 정지궤도 위성에서 생산되는 해수면온도 자료를 두 단계의 기계학습을 통해 융합하여 4 km의 공간해상도를 가지는 일별 해수면온도 합성장을 만들었다. 첫번째 복원 단계에서는 Data INterpolate Convolutional AutoEncoder (DINCAE) 모델을 이용하여 다종 위성기반 해수면온도 자료를 합성하여 복원하였고, 두번째 보정 단계에서는 복원된 해수면온도 자료를 현장관측자료에 맞춰 Light Gradient Boosting Machine (LGBM) 모델로 학습시켜 최종적인 일별 해수면온도 합성장을 만들었다. 개발된 모델의 검증을 위해 복원 단계에서 무작위 50일의 자료 중 일부분을 제거하여 복원한 뒤 제거된 영역에 대해 검증하였으며, 보정 단계에서는 Leave One Year Out Cross Validation (LOYOCV) 기법을 이용하여 현장자료와의 정확도를 검증하였다. DINCAE 모델의 해수면온도 복원 결과는 상당히 높은 정확도(R2=0.98, bias=0.27℃, RMSE=0.97℃, MAE=0.73℃)를 보였다. 두번째 단계의 LGBM 보정 모델의 정확도 개선은 표층 뜰개 부이와 계류형 부이 현장자료와의 비교에서 모두 상당한 향상(RMSE=∆0.21-0.29℃, rRMSE=∆0.91-1.65%, MAE=∆0.17-0.24℃)을 보여주었다. 특히, 모든 현장 자료를 이용한 보정 모델의 표층 뜰개 부이와의 정확도는 동일한 현장 자료가 동화된 기존 해수면온도 합성장보다 나은 정확도를 보였다. 또한 LGBM 보정 모델은 랜덤포레스트(random forest)를 사용한 선행연구에서 보고된 과적합의 문제를 상당부분 해결하였다. 보정된 해수면온도는 기존의 초고해상도 해수면온도 합성장들과 유사한 수준으로 수온 전선과 와동 등의 중규모 해양현상을 뚜렷하게 모의하였다. 본 연구는 다종위성 자료와 기계학습 기법을 사용해 시공간적 공백 없는 고해상도 해수면온도 합성장 제작 방법을 제시하였다는 점에서 가치가 있다.