• Title/Summary/Keyword: Square Root

Search Result 2,665, Processing Time 0.033 seconds

Development of Measuring Tool for Health Promotion Behavior of Nurses (간호사의 건강증진행위 측정도구 개발)

  • Kim, Min-young;Choi, Soon-Ok;Kim, Eun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.138-147
    • /
    • 2021
  • The purpose of this study was to develop a measuring tool for the health promotion behavior of Korean nurses. This would address the lack of a proven tool that reflects the nature of the nurses' nursing environment. This study was conducted on 530 nurses from January to December 2019. A literature review and focus group interview were conducted, data analysis was carried out to measure validity and reliability, and the conceptual framework was constructed by applying the IMB model. Five factors namely self-concept (2 questions), hospital life management (4 questions), knowledge and information regarding health (5 questions), physical and mental stress management (3 questions), and work adaptation (2 questions) were framed into 16 questions. The model fit was 346.23 (��<.001), Parsimonious Normed Fit Index (PNFI) was 0.60, and Parsimonious Comparative Fit Index (PCFI) was 0.63, which met the acceptance criteria, and the Root Mean Square Error of Approximation (RMSEA) was 0.10. Goodness of Fit Index (GFI) was 0.88, Comparative Fit Index (CFI) was 0.85, and Incremental Fit Index (IFI) was 0.85 which were found to be acceptable as per the applicable standards. All items had a Cronbach's �� score of .85, which ensured stable reliability. The nurse's health promotion behavior measurement tool developed in this study will be used to measure the nurse's health promotion behavior in terms of nursing practice which will help in understanding the broad contours of this behavior.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

A study on estimation of lowflow indices in ungauged basin using multiple regression (다중회귀분석을 이용한 미계측 유역의 갈수지수 산정에 관한 연구)

  • Lim, Ga Kyun;Jeung, Se Jin;Kim, Byung Sik;Chae, Soo Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1193-1201
    • /
    • 2020
  • This study aims to develop a regression model that estimates a low-flow index that can be applied to ungauged basins. A total of 30 midsized basins in South Korea use long-term runoff data provided by the National Integrated Water Management System (NIWMS) to calculate average low-flow, average minimum streamflow, and low-flow index duration and frequency. This information is used in the correlation analysis with 18 basin factors and 3 climate change factors to identify the basin area, average basin altitude, average basin slope, water system density, runoff curve number, annual evapotranspiration, and annual precipitation in the low-flow index regression model. This study evaluates the model's accuracy by using the root-mean-square error (RMSE) and the mean absolute error (MAE) for 10 ungauged, verified basins and compares them with the previous model's low-flow calculations to determine the effectiveness of the newly developed model. Comparative analysis indicates that the new regression model produces average low-flow, attributed to the consideration of varied basin and hydrologic factors during the new model's development.

Height Determination Using Vanishing Points of a Single Camera for Monitoring of Construction Site (건설현장 모니터링을 위한 단안 카메라 기반의 소실점을 이용한 높이 결정)

  • Choi, In-Ha;So, Hyeong-Yoon;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2021
  • According to the government's announcement of the safety management enhancement policy for small and medium-sized private construction sites, the subject of mandatory CCTV installation has been expanded from large construction sites to small and medium-sized construction sites. However, since the existing CCTV at construction sites has been used for simple control for safety management, so research is needed for monitoring of construction sites. Therefore, in this study, three vanishing points were calculated based on a single image taken with a monocular camera, and then a camera matrix containing interior orientation parameters information was determined. And the accuracy was verified by calculating the height of the target object from the height of the reference object. Through height determination experiments using vanishing points based on a monocular camera, it was possible to determine the height of target objects only with a single image without separately surveying of ground control points. As a result of the accuracy evaluation, the root mean square error was ±0.161m. Therefore, it is determined that the progress of construction work at the construction sites can be monitored through the single image taken using the single camera.

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

An Experimental Study on Assessing Precision and Accuracy of Low-cost UAV-based Photogrammetry (저가형 UAV 사진측량의 정밀도 및 정확도 분석 실험에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Woonggyu;Jeong, Woochul;Jo, Eonjeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.207-215
    • /
    • 2022
  • This research has been focused on accessing precision and accuracy of UAV (Unmanned Aerial Vehicle)-derived 3-D surveying coordinates. To this end, a highly precise and accurate testing control network had been established by GNSS (Global Navigation Satellite Systems) campaign and its network adjustment. The coordinates of the ground control points and the check points were estimated within 1cm accuracy for 95% of the confidence level. FC330 camera mounted on DJI Phantom 4 repeatedly took aerial photos of an experimental area seven times, and then processed them by two widely used software packages. To evaluate the precision and accuracy of the aerial surveys, 3-D coordinates of the ten check points which automatically extracted by software were compared with GNSS solutions. For the 95% confidence level, the standard deviation of two software's result is within 1cm, 2cm, and 4cm for the north-south, east-west, and height direction, and RMSE (Root Mean Square Error) is within 9cm and 8cm for the horizontal, vertical component, respectively. The interest is that the standard deviation is much smaller than RMSE. The F-ratio test was performed to confirm the statistical difference between the two software processing results. For the standard deviation and RMSE of most positional components, exception of RMSE of the height, the null hypothesis of the one-tailed tests was rejected. It indicates that the result of UAV photogrammetry can be different statistically based on the processing software.

Non-conductive Film Effect on Ni-Sn Intermetallic Compounds Growth Kinetics of Cu/Ni/Sn-2.5Ag Microbump during Annealing and Current Stressing (열처리 및 전류인가 조건에서 Cu/Ni/Sn-2.5Ag 미세범프의 Ni-Sn 금속간화합물 성장 거동에 미치는 비전도성 필름의 영향 분석)

  • Kim, Gahui;Ryu, Hyodong;Kwon, Woobin;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • The in-situ electromigration(EM) and annealing test were performed at 110, 130, and 150℃ with a current density of 1.3×105 A/cm2 conditions to investigate the effect of non-conductive film (NCF) on growth kinetics of intermetallic compound (IMC) in Cu/Ni/Sn-2.5Ag microbump. As a result, the activation energy of the Ni3Sn4 IMC growth in the annealing and EM conditions according to the NCF application was about 0.52 eV, and there was no significant difference. This is because the growth rate of Ni-Sn IMC is much slower than that of Cu-Sn IMC, and the growth behavior of Ni-Sn IMC increases linearly with the square root of time, so it has the same reaction mechanism dominated by diffusion. In addition, there is no difference in the activation energy of the Ni3Sn4 IMC growth because the EM resistance effect of the back stress according to the NCF application is not large.

Evaluation of NDVI Retrieved from Sentinel-2 and Landsat-8 Satellites Using Drone Imagery Under Rice Disease (드론 영상을 이용한 Sentinel-2, Landsat-8 위성 NDVI 평가: 벼 병해 발생 지역을 대상으로)

  • Ryu, Jae-Hyun;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1231-1244
    • /
    • 2022
  • The frequency of exposure of field crops to stress situations is increasing due to abnormal weather conditions. In South Korea, large-scale diseases in representative paddy rice cultivation area were happened. There are limits to field investigation on the crop damage due to large-scale. Satellite-based remote sensing techniques are useful for monitoring crops in cities and counties, but the sensitivity of vegetation index measured from satellite under abnormal growth of crop should be evaluated. The goal is to evaluate satellite-based normalized difference vegetation index (NDVI) retrieved from different spatial scales using drone imagery. In this study, Sentinel-2 and Landsat-8 satellites were used and they have spatial resolution of 10 and 30 m. Drone-based NDVI, which was resampled to the scale of satellite data, had correlation of 0.867-0.940 with Sentinel-2 NDVI and of 0.813-0.934 with Landsat-8 NDVI. When the effects of bias were minimized, Sentinel-2 NDVI had a normalized root mean square error of 0.2 to 2.8% less than that of the drone NDVI compared to Landsat-8 NDVI. In addition, Sentinel-2 NDVI had the constant error values regardless of diseases damage. On the other hand, Landsat-8 NDVI had different error values depending on degree of diseases. Considering the large error at the boundary of agricultural field, high spatial resolution data is more effective in monitoring crops.