• Title/Summary/Keyword: Square Root

Search Result 2,666, Processing Time 0.034 seconds

A study on coupled SWAT and CFD models of regulating gate operation in small agricultural watershed (농촌소유역에서의 제수문 기작을 고려한 유역-전산유체역학 연계 모델링 기초연구)

  • Kim, Dong Hyeon;Jang, Taeil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.262-262
    • /
    • 2020
  • 새만금 유역 내에는 다수의 보 및 제수문이 위치하고 있으며, 관개, 배수, 오염원 등이 영향을 받고 있다. 선행연구 중에는 보 및 제수문을 고려하기 위해 모형의 소스코드를 일부 수정하여 연구되고 있으나 유역모형으로 구현하기에는 한계가 있으며, 이에 대한 연구는 미흡한 실정이다. 본 연구에서는 만경강 유역을 대상으로 유역 모형과 전산유체역학 모형을 이용하여 하류 제수문에 대한 유입, 유출 그리고 오염원 등의 영향을 분석하고자 한다. SWAT (Soil and water assessment tool)은 유역 모형으로 미국 농무부에서 농업유역의 수문순환 및 비점오염원을 모의하기 위해 개발한 모형이다. CFD (Computational fluid dynamics)는 전산유체역학 모형으로 구조물을 설계하고 유체, 기체 등을 모의할 수 있다. SWAT 모형을 이용하여 농업유역 하류 제수문 위치를 출구로 지정하여 수문을 모의하고 그 결과자료는 CFD에 입력할 수 있다. CFD는 하류 제수문 구조물을 설계하고 SWAT 모형의 수문자료를 입력하여 제수문의 영향을 평가할 수 있다. 우선, 만경강 유역을 대상유역으로 선정하고 부용, 황산, 상리, 고은교 등 제수문의 위치를 파악하였다. SWAT 모형 구축을 위해 2015-2018년까지 기상, 수위, 유량 관측자료를 수집하였으며, 보정기간과 검증기간은 각 2년이며, 모형 성능 검증에 사용한 적합성 평가 지수는 R2 (Determine coefficient), RMSE (Root mean square error), 그리고 NSE (Nash-sutcliffe efficiency coefficient)를 사용하였다. 모형의 보정은 SWAT-CUP 자동보정프로그램을 사용하였으며, 모형의 보정지수는 NSE를 사용하였고, 1,000회 반복 수행을 통해 매개변수를 최적화하였다. 보정기간의 유출량 적합성 평가 지수는 R2, RMSE 그리고 NSE가 각각 0.84, 2.96 mm/day, 0.70을 나타냈다. 검증기간의 유출량 적합성 평가 지수는 R2, RMSE 그리고 NSE가 각각 0.72, 2.94 mm/day, 0.46을 나타냈다. 본 연구는 유역 차원과 구조물 차원의 모델링을 연계하는 것으로 향후 제수문 모니터링 자료를 활용하여 CFD 모형을 구축하고 유입량에 따른 제수문의 검보정 및 영향을 평가하고자 한다. 이러한 결과는 최근 기후변화에 따라 급격히 변화하는 유역환경에 대처할 수 있는 방안이 될 수 있을 것이며, 제수문 시설을 관리하는 기관에서도 합리적인 운영방안에 대한 기초자료로 기여할 수 있을 것으로 사료된다.

  • PDF

Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations

  • Mohammad Hossein Malekipour;Farzaneh Shirani;Shadi Moradi;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.13
    • /
    • 2023
  • Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer's disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer's disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/ mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.

e-Pharmacophore modeling and in silico study of CD147 receptor against SARS-CoV-2 drugs

  • Nisha Kumari Pandit;Simranjeet Singh Mann;Anee Mohanty;Sumer Singh Meena
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.17.1-17.12
    • /
    • 2023
  • Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model (몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델)

  • Lee, Joohyung;Seo, Miru;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF

Application of Informer for time-series NO2 prediction

  • Hye Yeon Sin;Minchul Kang;Joonsung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.11-18
    • /
    • 2023
  • In this paper, we evaluate deep learning time series forecasting models. Recent studies show that those models perform better than the traditional prediction model such as ARIMA. Among them, recurrent neural networks to store previous information in the hidden layer are one of the prediction models. In order to solve the gradient vanishing problem in the network, LSTM is used with small memory inside the recurrent neural network along with BI-LSTM in which the hidden layer is added in the reverse direction of the data flow. In this paper, we compared the performance of Informer by comparing with other models (LSTM, BI-LSTM, and Transformer) for real Nitrogen dioxide (NO2) data. In order to evaluate the accuracy of each method, mean square root error and mean absolute error between the real value and the predicted value were obtained. Consequently, Informer has improved prediction accuracy compared with other methods.

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.