DOI QR코드

DOI QR Code

Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations

  • Mohammad Hossein Malekipour (Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences) ;
  • Farzaneh Shirani (Dental Research Center, Dental Research Institute, Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences) ;
  • Shadi Moradi (Department of Medical Immunology, School of Medicine, Hamadan University of Medical Science) ;
  • Amir Taherkhani (Research Center for Molecular Medicine, Hamadan University of Medical Science)
  • Received : 2022.12.19
  • Accepted : 2023.01.12
  • Published : 2023.03.31

Abstract

Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer's disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer's disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/ mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.

Keywords

Acknowledgement

The authors would like to thank the Dental Research Center, Isfahan University of Medical Sciences, Isfahan- Iran, and the Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan - Iran, for their support.

References

  1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers 2017;3:17030.
  2. Goodson JM, Shi P, Mumena CH, Haq A, Razzaque MS. Dietary phosphorus burden increases cariogenesis independent of vitamin D uptake. J Steroid Biochem Mol Biol 2017;167:33-38. https://doi.org/10.1016/j.jsbmb.2016.10.006
  3. Duverger O, Beniash E, Morasso MI. Keratins as components of the enamel organic matrix. Matrix Biol 2016;52-54:260-265. https://doi.org/10.1016/j.matbio.2015.12.007
  4. Queiroz AM, Bonilla CM, Palma-Dibb RG, Oliveira HF, Nelson-Filho P, Silva LA, et al. Radiotherapy activates and protease inhibitors inactivate matrix metalloproteinases in the dentinoenamel junction of Permanent Teeth. Caries Res 2019;53:253-259. https://doi.org/10.1159/000492081
  5. Shimizu T, Ho B, Deeley K, Briseno-Ruiz J, Faraco IM Jr, Schupack BI, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS One 2012;7:e45022.
  6. Tannure PN, Kuchler EC, Falagan-Lotsch P, Amorim LM, Raggio Luiz R, Costa MC, et al. MMP13 polymorphism decreases risk for dental caries. Caries Res 2012;46:401-407. https://doi.org/10.1159/000339379
  7. Antunes LA, Antunes LS, Kuchler EC, Lopes LB, Moura A, Bigonha RS, et al. Analysis of the association between polymorphisms in MMP2, MMP3, MMP9, MMP20, TIMP1, and TIMP2 genes with white spot lesions and early childhood caries. Int J Paediatr Dent 2016;26:310-319. https://doi.org/10.1111/ipd.12202
  8. Fanchon S, Bourd K, Septier D, Everts V, Beertsen W, Menashi S, et al. Involvement of matrix metalloproteinases in the onset of dentin mineralization. Eur J Oral Sci 2004;112:171-176. https://doi.org/10.1111/j.1600-0722.2004.00120.x
  9. Wong MC, Ding H, Wang J, Chan PS, Huang J. Prevalence and risk factors of colorectal cancer in Asia. Intest Res 2019;17:317-329. https://doi.org/10.5217/ir.2019.00021
  10. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem 2020;194:112260.
  11. Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol 2020;32:1105-1119. https://doi.org/10.1515/jbcpp-2020-0036
  12. Gupta P, Rettiganti M, Jeffries HE, Scanlon MC, Ghanayem NS, Daufeldt J, et al. Risk factors and outcomes of in-hospital cardiac arrest following pediatric heart operations of varying complexity. Resuscitation 2016;105:1-7. https://doi.org/10.1016/j.resuscitation.2016.04.022
  13. Scannevin RH, Alexander R, Haarlander TM, Burke SL, Singer M, Huo C, et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem 2017;292:17963-17974. https://doi.org/10.1074/jbc.M117.806075
  14. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem 2020;194:112260.
  15. Thorsen SB, Christensen SL, Wurtz SO, Lundberg M, Nielsen BS, Vinther L, et al. Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer: a retrospective study. BMC Cancer 2013;13:598.
  16. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016;31:177-183. https://doi.org/10.3109/14756366.2016.1161620
  17. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011;278:16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  18. Damodharan U, Ganesan R, Radhakrishnan UC. Expression of MMP2 and MMP9 (gelatinases A and B) in human colon cancer cells. Appl Biochem Biotechnol 2011;165:1245-1252. https://doi.org/10.1007/s12010-011-9342-8
  19. Aalinkeel R, Nair BB, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, et al. Overexpression of MMP-9 contributes to invasiveness of prostate cancer cell line LNCaP. Immunol Invest 2011;40:447-464. https://doi.org/10.3109/08820139.2011.557795
  20. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012;2:303-336. https://doi.org/10.3390/metabo2020303
  21. Chandra S, Roy A, Jana M, Pahan K. Cinnamic acid activates PPARalpha to stimulate lysosomal biogenesis and lower amyloid plaque pathology in an Alzheimer's disease mouse model. Neurobiol Dis 2019;124:379-395. https://doi.org/10.1016/j.nbd.2018.12.007
  22. Nair A, Preetha Rani MR, Salin Raj P, Ranjit S, Rajankutty K, Raghu KG. Cinnamic acid is beneficial to diabetic cardiomyopathy via its cardioprotective, anti-inflammatory, anti-dyslipidemia, and antidiabetic properties. J Biochem Mol Toxicol 2022;36:e23215.
  23. De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents: a review. Curr Med Chem 2011;18:1672-1703. https://doi.org/10.2174/092986711795471347
  24. Zolfaghari B, Yazdiniapour Z, Sadeghi M, Akbari M, Troiano R, Lanzotti V. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochem Anal 2021;32:84-90. https://doi.org/10.1002/pca.2924
  25. Rychlicka M, Rot A, Gliszczynska A. Biological properties, health benefits and enzymatic modifications of dietary methoxylated derivatives of cinnamic acid. Foods 2021;10:1417.
  26. Chen J, Ran M, Wang M, Liu X, Liu S, Yu Y. Structure-activity relationships of antityrosinase and antioxidant activities of cinnamic acid and its derivatives. Biosci Biotechnol Biochem 2021;85:1697-1705. https://doi.org/10.1093/bbb/zbab084
  27. Ruwizhi N, Aderibigbe BA. Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci 2020;21:5712.
  28. Mancilla-Montelongo G, Castaneda-Ramirez GS, Torres-Acosta JFJ, Sandoval-Castro CA, Borges-Argaez R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet Parasitol 2019;270:25-30. https://doi.org/10.1016/j.vetpar.2019.05.009
  29. Malheiro JF, Maillard JY, Borges F, Simoes M. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. Int Biodeterior Biodegrad 2019;141:71-78. https://doi.org/10.1016/j.ibiod.2018.06.003
  30. Sadeghi S, Davoodvandi A, Pourhanifeh MH, Sharifi N, ArefNezhad R, Sahebnasagh R, et al. Anti-cancer effects of cinnamon: insights into its apoptosis effects. Eur J Med Chem 2019;178:131-140. https://doi.org/10.1016/j.ejmech.2019.05.067
  31. Ge YX, Wang YH, Zhang J, Yu ZP, Mu X, Song JL, et al. New cinnamic acid-pregenolone hybrids as potential antiproliferative agents: design, synthesis and biological evaluation. Steroids 2019;152:108499.
  32. Nuti E, Cuffaro D, D'Andrea F, Rosalia L, Tepshi L, Fabbi M, et al. Sugar-based arylsulfonamide carboxylates as selective and water-soluble matrix metalloproteinase-12 inhibitors. ChemMedChem 2016;11:1626-1637. https://doi.org/10.1002/cmdc.201600235
  33. Rose PW, Prlic A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2017;45:D271-D281.
  34. Taherkhani A, Orangi A, Moradkhani S, Jalalvand A, Khamverdi Z. Identification of potential anti-tooth-decay compounds from organic cinnamic acid derivatives by inhibiting matrix metalloproteinase-8: an in silico study. Avicenna J Dent Res 2022;14:25-32. https://doi.org/10.34172/ajdr.2022.05
  35. Taherkhani A, Ghonji F, Mazaheri A, Lohrasbi MP, Mohamadi Z, Khamverdi Z. Identification of potential glucosyltransferase inhibitors from cinnamic acid derivatives using molecular docking analysis: a bioinformatics study. Avicenna J Clin Microbiol 2021;8:145-155. https://doi.org/10.34172/ajcmi.2021.27
  36. Crasci L, Basile L, Panico A, Puglia C, Bonina FP, Basile PM, et al. Correlating in vitro target-oriented screening and docking: inhibition of matrix metalloproteinases activities by flavonoids. Planta Med 2017;83:901-911.
  37. Jayaraj JM, Reteti E, Kesavan C, Muthusamy K. Structural insights on vitamin D receptor and screening of new potent agonist molecules: structure and ligand-based approach. J Biomol Struct Dyn 2021;39:4148-4159. https://doi.org/10.1080/07391102.2020.1775122
  38. Khan S, Bhardwaj T, Somvanshi P, Mandal RK, Dar SA, Jawed A, et al. Inhibition of C298S mutant of human aldose reductase for antidiabetic applications: evidence from in silico elementary mode analysis of biological network model. J Cell Biochem 2018;119:6961-6973. https://doi.org/10.1002/jcb.26904
  39. Tasleem M, Ishrat R, Islam A, Ahmad F, Hassan MI. Structural characterization, homology modeling and docking studies of ARG674 mutation in MyH8 gene associated with trismus-pseudocamptodactyly syndrome. Lett Drug Design Discov 2014;11:1177-1187. https://doi.org/10.2174/1570180811666140717190217
  40. Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 2008;8:1555-1572. https://doi.org/10.2174/156802608786786624
  41. Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Methicillin-resistant Staphylococcus aureus: docking-based virtual screening and molecular dynamics simulations to identify potential penicillin-binding protein 2a inhibitors from natural flavonoids. Int J Microbiol 2022;2022:9130700.
  42. Moradkhani S, Farmani A, Saidijam M, Taherkhani A. COVID-19: docking-based virtual screening and molecular dynamics study to identify potential SARS-CoV-2 spike protein inhibitors from plant-based phenolic compounds. Acta Virol 2021;65:288-302. https://doi.org/10.4149/av_2021_308
  43. Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular docking analysis of flavonoid compounds with matrix metalloproteinase-8 for the identification of potential effective inhibitors. Lett Drug Design Discov 2021;18:16-45. https://doi.org/10.2174/1570180817999200831094703
  44. Sun CY, Yang LL, Zhao P, Yan PZ, Li J, Zhao DS. Mechanisms of Cynarine for treatment of non-alcoholic fatty liver disease based on the integration of network pharmacology, molecular docking and cell experiment. Hereditas 2022;159:44.
  45. El-Mesallamy AM, Abdel-Hamid N, Srour L, Hussein SA. Identification of polyphenolic compounds and hepatoprotective activity of artichoke (Cynara scolymus L.) edible part extracts in rats. Egypt J Chem 2020;63:2273-2285.
  46. McGrowder DA, Miller FG, Nwokocha CR, Anderson MS, Wilson-Clarke C, Vaz K, et al. Medicinal herbs used in traditional management of breast cancer: mechanisms of action. Medicines (Basel) 2020;7:47.
  47. Heidarian E, Rafieian-Kopaei M. Protective effect of artichoke (Cynara scolymus) leaf extract against lead toxicity in rat. Pharm Biol 2013;51:1104-1109. https://doi.org/10.3109/13880209.2013.777931
  48. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, et al. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 2018;97:67-74. https://doi.org/10.1016/j.biopha.2017.10.064
  49. Antonio AG, Moraes RS, Perrone D, Maia LC, Santos KR, Iorio NL, et al. Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem 2010;118:782-788. https://doi.org/10.1016/j.foodchem.2009.05.063
  50. Antonio AG, Iorio NL, Pierro VS, Candreva MS, Farah A, dos Santos KR, et al. Inhibitory properties of Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch Oral Biol 2011;56:556-564. https://doi.org/10.1016/j.archoralbio.2010.12.001
  51. Ferrazzano GF, Amato I, Ingenito A, De Natale A, Pollio A. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 2009;80:255-262. https://doi.org/10.1016/j.fitote.2009.04.006
  52. Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem Pharmacol 2013;85:1341-1351. https://doi.org/10.1016/j.bcp.2013.02.008
  53. Park JJ, Hwang SJ, Park JH, Lee HJ. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1alpha/AKT pathway. Cell Oncol (Dordr) 2015;38:111-118. https://doi.org/10.1007/s13402-014-0216-2
  54. Lukitasari M, Nugroho DA, Widodo N. Chlorogenic acid: the conceivable chemosensitizer leading to cancer growth suppression. J Evid Based Integr Med 2018;23:2515690. X18789628.
  55. Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003;62:121-125. https://doi.org/10.1016/S0031-9422(02)00513-7
  56. Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Poplawska B, Bielawska A, et al. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 2018;107:397-407. https://doi.org/10.1016/j.biopha.2018.07.123
  57. Han YH, Kee JY, Hong SH. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front Pharmacol 2018;9:68.
  58. An Y, Zhao J, Zhang Y, Wu W, Hu J, Hao H, et al. Rosmarinic acid induces proliferation suppression of hepatoma cells associated with NF-kappaB signaling pathway. Asian Pac J Cancer Prev 2021;22:1623-1632. https://doi.org/10.31557/APJCP.2021.22.5.1623
  59. Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R, et al. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J Biomol Struct Dyn 2019;37:823-836. https://doi.org/10.1080/07391102.2018.1441073
  60. Mohseni-Shahri FS, Housaindokht MR, Bozorgmehr MR, Moosavi-Movahedi AA. Influence of taxifolin on the human serum albumin-propranolol interaction: multiple spectroscopic and chemometrics investigations and molecular dynamics simulation. J Solution Chem 2016;45:265-285. https://doi.org/10.1007/s10953-016-0435-4
  61. Li Y, Wang Q, He J, Yan J, Li H. Fluorescence spectroscopy and docking study in two flavonoids, isolated tectoridin and its aglycone tectorigenin, interacting with human serum albumin: a comparison study. Luminescence 2016;31:38-46. https://doi.org/10.1002/bio.2918