• Title/Summary/Keyword: Spun yam

검색결과 18건 처리시간 0.023초

Solo-spun 방적에서 섬유의 거동과 사의 물리적 성질(1) (The Fiber Behavior in Yarn Formation and the Physical Properties of Solo-spun Yam(1))

  • 박수현;김승진
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.346-352
    • /
    • 2001
  • This study surveys the fiber behavior in yam formation and the physical properties of Solo-spun yam. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier. The physical properties such as yam count, evenness, strength, and breaking elongation of these yams were compared with the properties of ring spun yams and analysed with the mechanism of Solo-spun yarn formation. The grooves on the surface of Solo-spun roller divide the web and interfere the twist propagation. These phenomena cause the uneven draft and the fly of fiber, so the Solo-spun yam becomes finer than fing-spun yam and the yam breaking strength and elongation deteriorate, but these demerits can be improved with rounding the protruded edge of Solo-spun roller grooves.

  • PDF

Properties of Wool/Spandex Core-Spun Yarn Produced on Modified Woolen Spinning Frame

  • Dang, Min;Zhang, Zhilong;Wang, Shanyuan
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.420-423
    • /
    • 2006
  • Spandex has been successfully applied on modified worsted spinning system to produce spandex core spun yam. However it's difficult to produce wool/spandex core-spun yam on woolen spinning system with the same modified device because the drafting device of the two systems is quite different. A new method is introduced to apply spandex on woolen spinning system in this paper. Core-spun yam produced in this way has good appearance and quality by comparing with normal yam. A series of experiments were carried out to study the influence of spandex drafting ratio and yam twist factor on tensile' properties and elasticity of core-spun yams. The results indicate that core-spun yam with spandex drawing ratio of 2.5 and twist factor of 13.63 has highest value of tenacity and breaking elongation.

A Theoretical Investigation on the Generation of Strength in Staple Yarns

  • Ghosh Anindya
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.310-316
    • /
    • 2006
  • In this article, an attempt has been made to explain the failure mechanism of spun yams. The mechanism includes the aspects of generation and distribution of forces on a fibre under the tensile loading of a yam, the free body diagram of forces, the conditions for gripping and slipping of a fibre, and the initiation, propagation, and ultimate yam rupture in its weakest link. A simple mathematical model for the tenacity of spun yams has been proposed. The model is based on the translation of fibre bundle tenacity into the yam tenacity.

탄소 방적사의 열전도도 모델링 (Modeling of Thermal Conductivity of Carbon Spun Yarn)

  • 조영준;설인환;강태진;박종규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

초임계 이산화탄소에 의한 아라미드(Nomex) 방적사의 분산염료에 대한 염색성에 관한 연구 (A Study on Dyeing Ability of Aramid(Nomex) Spun Yarn in Supercritical Carbon Dioxide using Disperse dyes)

  • 용관중;박영환;김한석;유기풍;김인회;남성우
    • 한국염색가공학회지
    • /
    • 제15권2호
    • /
    • pp.93-101
    • /
    • 2003
  • To acquire dyeing ability on aramid(Nomex) spun yarn in supercritical fluid dyeing, supercritical fluid dying(SFD) machine of 3L scale was designed. C. I. Disperse Red 60 and Red 360 were used in this work. It was possible to increase dyeing ability and to get level dyeing of fiber by attaching assistance devices(controlling device of supercritical fluid, nozzle, cover of carrier, etc.) to SFD machine. Physical properties(tensile strength, elongation, shrinkage) of Nomex spun yam treated by SFD were not changed. K/S values of dyed Nomex spun yam with Red 360 were higher than that with Red 60 and color fastness of dyed Nomex spun yam by SFD was similar to that by conventional dyeing method.

Evaluation of Image Quality of Inkjet Printing on the Spun Polyester Fabrics

  • Park, Heung-Sup
    • 한국염색가공학회지
    • /
    • 제18권5호
    • /
    • pp.61-71
    • /
    • 2006
  • This paper addresses the factors hindering the image quality of lines in inkjet printed on polyester fabric as printing media. Lines were printed onto different types of polyester fabrics in warp and filling directions. Line image quality including line width, edge blurriness, and edge raggedness was assessed. The effect of capillary wicking on line image quality of printed spun polyester fabric is discussed. The factors on the image quality include printing position(top of the yam or between the yarn), printing direction(warp or filling), yarn structures(filament or spun), thread size(yam or fiber), finishing, and ink properties(evaporation rate). More than 30% differences in image quality results were observed by changing the printing location on the spun polyester fabric. The best results of the image quality were obtained with the printed plain and spun polyester fabrics. The fiber sizes may affect capillary size; therefore, the image quality can be dissimilar. Types of finishing materials and inks greatly improve the line image quality on spun polyester fabrics.

Solo spun 방적에서 섬유의 거동과 사의 물리적 성질(2) (The Fiber Behavior in Solo-spun Yarn Formation and the Physical Properties of Solo-spun Yarn(2))

  • 박수현;김승진
    • 한국염색가공학회지
    • /
    • 제13권6호
    • /
    • pp.428-434
    • /
    • 2001
  • This study surveys the fiber behavior in yam formation and the Physical properties of Solo-spun yarn. The specimens were made by six types of Solo-spun rollers with fixed twist multiplier In the previous part, the physical properties such as yarn count, evenness, strength, and breaking elongation of these yams were compared with the properties of ring shun yarns and analysed with the mechanism of Solo-spun yarn formation. In the second part of this report, the abrasion resistance and hairiness were discussed wish respect to the micro yarn structures. The narrower the groove width of Solo-spun roller is, the more active the bulk fibers migration is. The Solo-spun film structure has two groups. One is shorter than the others one in longitudinal direction of yarn and has the same structure as ring-spun yarn, which is derided from the smooth zone on the surface of Solo-spun roller. The other one is longer than the former and there are the wrapping fibers. This part is derived from the conflicted grooves on the surface of Solo-spun troller.

  • PDF

복셀화기법을 이용한 탄소방적사강화 복합재료의 열전도도 모델링 (Voxelization-based Model for Predicting Thermal Conductivities of Spun Type Carbon Fabric Composites)

  • 조영준;설인환;강태진;박종규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.90-93
    • /
    • 2005
  • A thermal model of carbon spun yarn and its composite is presented. Based on voxelization method, the unit cells of spun carbon yam and its composite are divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method, temperature distribution in the unit cell can be obtained. Effective thermal conductivity of unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

Studies on Reduction of Yarn Hairiness by Nozzles in Ring Spinning and Winding by Airflow Simulation

  • Rengasamy R. S.;Patnaik Asis;Punekar Hemant
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.317-322
    • /
    • 2006
  • Reduction of yam hairiness by nozzles in ring spinning and winding is a new approach. Simulation of the airflow pattern inside the nozzles provides useful information about actual mechanism of hairiness reduction. The swirling air current inside the nozzles is capable of wrapping the protruding hairs around the yam body, thereby reducing yam hairiness. Since production rate of winding is very high and the process itself increases yarn hairiness any method to reduce the hairiness of yarns at this stage is a novel approach. A CFD (computational fluid dynamics) model has been developed to simulate the airflow pattern inside the nozzles using Fluent 6.1 software. In this study, both S- and Z-type nozzles having an axial angle of 500 and diameter of 2.2 mm were used for simulation studies. To create a swirling effect, four air holes of 0.4 mm diameter are made tangential to the inner walls of the nozzles. S- and Z-twisted yams of 30 tex were spun with and without nozzles and were tested for hairiness, tensile and evenness properties. The total number of hairs equal to or exceeding 3 mm (i.e. the S3 values) for yam spun with nozzle is nearly 49-51 % less than that of ring yams in case of nozzle-ring spinning, and 15 % less in case of nozzle-winding, while both the yarn types show little difference in evenness and tensile properties. Upward airflow gives best results in terms of hairiness reduction for nozzle-ring and nozzle wound yams compared to ring yarns. Yarn passing through the centre of the nozzle shows maximum reduction in S3 values.

케냐프/레이온 혼방 직물의 특성에 관한 연구 (The Characteristics of Kenaf/Rayon Fabrics)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • 한국의류학회지
    • /
    • 제28권9_10호
    • /
    • pp.1282-1291
    • /
    • 2004
  • Kenaf was cultivated and harvested in large quantity in Cheju Island and Chinju, Kyungsangnamdo. It was chemically rotted with 3% NaOH for 60 minutes at 100$^{\circ}C$, neutralized using 1% acetic acid, washed and dried, and obtained 40kg of dry kenaf fiber. Kenaf 15/rayon 85, flax 15/rayon 85, and rayon 100% yam was spun and the physical characteristics were measured. Plain weave and twill weave fabrics were made using each of the above yarns as the filling yam. Cotton 100% yam was used as the warp yam in all fabrics. Kenaf/rayon blend yarns were higher in tenacity and elongation, lower in yam uniformity, higher in the number of nep than the flax/rayon blended yams. Kenaf/rayon blend fabric had higher tenacity and elongation compared to the flax/rayon blend fabric Kenaf/rayon blend fabric was most stiff in both plain weave and twill weave fabrics whereas drape characteristics was dependent upon the fabric structure of the kenaf/rayon blend and flax/rayon blend. There were little differences between the kenaf/rayon blend fabric and the flax/rayon blend fabric in the Kawabata physical measurements and the PHVs. The only drawback of kenaf fiber was it's surface roughness and it is expected that it can be improved by enzyme retting and mechanical bundle separation.