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Abstract: In this article, an attempt has been made to explain the failure mechanism of spun yarns. The mechanism includes
the aspects of generation and distribution of forces on a fibre under the tensile loading of a yarn, the free body diagram of
forces, the conditions for gripping and slipping of a fibre, and the initiation, propagation, and ultimate yarn rupture in its
weakest link. A simple mathematical model for the tenacity of spun yarns has been proposed. The model is based on the

translation of fibre bundle tenacity into the yarn tenacity.
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Introduction

The strength of a spun yarn has great significance in terms
of yarn quality. Therefore, the importance of the theoretical
explanation of generation of strength in a spun yarn is worth
mentioning. In spite of the number of publications [1-13]
reported so far in the literature concerning this aspect, the
actual failure mechanism of staple yarns is not yet clearly
explained. Therefore, in this present article, firstly an attempt
has been made to explain the mechanism of spun yarn failure
in a simple way, which has validity in explaining some of the
anomalies encountered in the previous literatures.

In this paper, another attempt has been made to derive a
mathematical model for the spun yarn tenacity, which is
based on the concept of translation of fibre bundle tenacity
into yarn tenacity. The model is derived from the knowledge
of the mechanism of spun yarn failure.

A Theoretical Analysis of Spun Yarn Failure

To begin with the analysis of failure process in a staple
yarn, we have primarily adopted Hearle’s [1] qualitative
approach of the behavior of spun yarns during extension and
thereafter we have proposed our approach to the problem. A
most desirable description of staple yarn failure mechanism
might read as follows:

Twist imparts coherence to the fibres in a staple yarn.
Apart from twist, fibre migration, which causes each fibre to
move across the yarn cross-section, gives better interlocking
of fibres in yarns. Therefore, a staple yarn is a self-interlocking
structure. To develop strength in a staple yarn, the individual
fibres must grip each other when the strand is stressed.
When a load is applied to staple yarn, the fibres are held
together by friction, which is mainly derived from geometry,
such as twist and migration.

At a given load in the yarn, twist and migration cause an
externally imposed tension to be converted internally into
lateral pressure ¢; applied by neighboring fibres acting

*Corresponding author: anindya.textile@gmail.com

310

normal to the fibre axis (Figure 1). Due to the lateral pressure
the frictional forces between the fibres are generated which
build up a resistance against the tension in the yarn body. [n
order to give a simple treatment of spun yarn failure, the
following assumption are made:

e The lateral pressure applied by neighboring fibres is a

linearly increasing function of applied tension in the yarn.
¢ The length of fibre is constant.

o Fibre diameter is constant along the length.

o Fibre-to-fibre friction follows Amonton’s law.

Thus,

F = uN @)
where F: frictional force, N: lateral force, 1 coefficient of
fibre-to-fibre friction.

The following notations are used:

L: fibre length

d: fibre diameter

o, axial stress on a fibre

oy. lateral pressure on a fibre

Fibre

~

o

<~ Spun yamn

Figure 1. Generation of lateral pressure on the fibre.
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Figure 2. Build-up of tensile stress in a fibre [Hearle (1980)].

[ critical length
o, : maximum stress of a fibre at a given load in yarn
A simple and linear diagram of the variation of tensile

stress along the length of a fibre in a yarn is given in Figure
2. At the fibre end tension is zero, since at the tip of the fibre
no force can be applied. But due to generation of lateral
pressure on a fibre, there will be gradual build up of the
frictional force along the fibre. At a distance s from an end
of a fibre (Figure 2), frictional force equals to the cumulative
resistance to slip. Therefore, frictional force F; at a distance s
from an end of a fibre can be expressed as:

F,

s

= pund jo o,ds )

When external tension in the yarn is zero, g, = 0. Again, at
zero twist, o; = 0. Therefore, in these two conditions, there is no
frictional resistance and fibres can no longer resist the load.

The Distribution of Tensile Stress on a Fibre

If oy is assumed to be constant along the length of a fibre,
the equation of frictional resistance of a fibre at a distance s
from an end is given by
F, = undoys (3)

8
2
The applied tension at that position of the fibre is ﬁaa .
Now, at equilibrium, the applied tension in the fibre is
balanced by the frictional resistance. Hence,

7 d 4
4 Ca T H7ACS 4)
5, = 2o 5)

The equation (5) represents the axial stress value of a fibre
at a distance s from its end. But, if o; is assumed to vary
along the length of a fibre, the axial stress at a distance s is
given by

0, = %[ o,ds 6)
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Figure 3. The distribution of tensile stress along the whole length
of a fibre.

On a fibre, at a distance /. from an end, tensile stress
reaches maximum value for a given yarn tension. This
means that any force greater than this value cannot be
applied to the fibre body at a certain level of yam tension.
The distance /. from the fibre end is known as critical length.

For constant g; along the fibre length, the maximum value
of stress of a fibre at a given load in yarn is given by the
following equation

. o,l,

5, = ™

For a given load in the yarn, the magnitude of the axial
stress in the length (L — 2/) is the effective stress value on
the fibre. Figure 3 depicts the distribution of tensile stress
along the fibre.

The Conditions for Gripping and Slipping of a Fibre

From the foregoing discussion, it is clear that, a fibre
cannot develop maximum stress value at a given load in the
yarn, if it will satisfy the following condition

L. =% (8)

Therefore, a slipped fibre will also satisfy the following
condition
2

urdl o, < % -0, 9
o,-d

o<y (10)
‘

A slip fibre never be gripped at any position along its
length and it does not fully contributing to the yarn strength.
Thus a slipped fibre is also known as the non-load-
contributing fibre. From the equation (10) it can be concluded
that if the value of oy is lower for a fibre, the possibility of a
fibre slipping during tensile loading of a yarn increases.
Fibres having poor migration such as those in the outer layer
of a yarn tend to slip under yarn tension. Further, short fibres
in the yarn are prone to slip. Also, a poor degree of fibre
interlocking in the yarn causes more fibre to slip. A typical
example of the distribution of tensile stress along a slipped



312 Fibers and Polymers 2006, Vol.7, No.3

. For gripped fibre
117
ﬁ Mpped fibre
H
g <> <~ I=>
& Ik )

L
Length ————»

Figure 4. The distribution of tensile stress along the length of
gripped and slipped fibres.

fibre is shown in Figure 4.
On the contrary, a gripped fibre will satisfy the following
condition

(L-2£)>0 (1)
ol <§ (12)

Therefore, for a gripped fibre, a balance will be effectively
built up between the maximum values of tension and
frictional forces. Hence,

undl.o, = T&a (13)
il = ;’;’0" (14)
2

A gripped fibre contributes fully to bear the load when a
yarn is stressed. At the place of yarn failure, when a gripped
fibre reaches its breaking load or extension, it will break.
Thus the gripped fibres are known as the contributing fibres.
Figure 4 depicts the typical distribution of tensile stress
along a gripped fibre.

The Relationship Between Axial and Lateral Stresses
Helical migratory configuration of fibres leads to the
conversion of applied load in the yarn to lateral pressure. Let
us assume that P be the applied load to the yarn. Now, for a
gripped fibre, the maximum stress value is directly proportional
to the applied load in the yarn. Figure 5 represents the
distribution of tensile stress on a fibre for two different
values of the applied load in the yarn. Therefore, we have

5. P (15)
Also, lateral pressure applied by the neighboring fibres is
directly proportional to the applied load in the yarn, which

follows

o, P (16)
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Figure 5. The distribution of tensile stress on a fibre for twc
different values of the applied load in the yarn, where P, > P,.

Therefore, from the above equations, we can write that

o, T, 17

~

L0, = KO, (18)
where x = an operational factor which converts the tensile
stress to transverse stress.

The Free Body Diagram of Forces

In Figure 6, a yarn A4’ is subjected to axial tension by the
action of a vertical load P applied in the axis of a yarn, the
proper weight of which is neglected. The load on the yam
stretches it to produce rupture. This tendency to rupture i
resisted by internal forces within the yarn. To visualize thesiz
internal forces, imagine that the yam is cut at a section mn
perpendicular to its axis and that the lower portion is isolated
as a free body (Figure 6). At the lower end of this portion of
the yarn, the external force P is applied. On the upper end
are the internal forces representing the actions of the fibres
of the upper part of the yarn on those of the lower part.
These forces are continuously distributed over the cross-
section mn. Visualizing each fibre in the yarn carries its fair

\_;% ,

Figure 6. The forces acting in the yarn.
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share of the load, it appears reasonable to assume, in this
case, that the distribution of forces over the yarn cross-
section will be uniform. From the condition of equilibrium
of the free body (Figure 6), it is seen that the resultant of this
uniform distribution of internal forces must be equal to the
external load. Thus, if the force, p; is acting along the i-th
fibre axis, the force along the direction of yarn axis will be p;
cosd, where @, is the helix angle made by the i-th fibre with
the yarn axis. Therefore, we have

P = io(p,.cos 6) (19)

i=

The Yarn as a Successive Link of Fibre Bundle

Those fibre bundle at the place of yarn break, which
themselves break, and therefore determine the yarn strength
must obviously have been gripped at two places and are
pulled apart. Therefore, the fibre bundle tenacity, which is
registered as yarn tenacity, must correspond to that at a certain
gauge length and this length can be termed as the effective
gripping length. This effective gripping length need not
necessarily be either zero, or 1/8-inch.-Obviously with increasing
twist and increasing degree of fibre bundle interlocking, this
effective gripping length will decrease. Apart from that,
fibre characteristics such as length, crimp, and friction could
influence the degree of interlocking and therefore, the distance
at which fibre bundle interlock themselves.

In normal yarns the boundaries of the fracture zone are
very nebulous and cannot be specified directly, nevertheless
some estimate of the fracture zone length may be obtained
by observing the broken portions of a yarn. From the
analysis of the two failure ends of yarn one can reconstruct
the profile of yam before break. A typical diagram of the
two broken pieces of the yarn is shown in Figure 7, from
which

1, = I(1-8) (20)

where /,: actual length of the weakest zone in the yarn before
the break, /: length of the failure zone, & yarn strain at break.

Therefore, a yarn can be assumed to have successive
elements or links in the form of sections of fibre bundles.
The links may differ in their length, fibre arrangement, and
linear density. The length of any given element is poorly

Figure 7. The broken ends of a yamn.
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Figure 8. A yarn as a successive link of fibre bundle.

defined, because the elements are not separate entities but
each gradually merges into its neighbor at either end.
Nevertheless an average element length may be considered
to exist [14]. A fibre can pass through several links of fibre
bundle. A schematic representation of a yarn as a successive
link of fibre bundle is shown in Figure 8, assuming that the
length of each link is equal to a length /,, When a yarn is
subjected to tension, the load is uniformly distributed among
the links. But the breaking load of a link of fibre bundle can
be differed from each other. Yarn breaks at the weakest link
and yarn breaking load equals to the breaking strength of the
weakest link [15].

Phoenix [16] pointed out that for poor degree of fibre
bundle interlocking in the yarn, the equal load sharing would
likely to be expected among the surviving fibres and the
length of the fibre bundle (/) would tend to be large. In this
case the appearance of the failure zone would be fraying
type. On the other hand, for better degree of fibre bundle
interlocking, local load sharing would likely to be taken
place among the surviving fibres, thereby, yarn failure would
be proceeded by catastrophic crack growth and the length of
the link of fibre bundle (/,) would tend to be small. He also
mentioned that the actual load sharing in spun yarns lies
somewhere in between these two extremes.

The Condition of Fibre Break in the Weakest Link and
Ultimate Yarn Failure

When a yarn is subjected to tensile load, it breaks at the
weakest portion, which comprises the minimum number of
fibres in the cross-section. The thinnest place having minimum
number of fibres has the lowest torsional stiffness so that
twist tends to concentrate here, leading to more than optimum
twist at this place. Although, higher twist at this place reduces
the fibre slippage, but at the same time, increased fibre
obliquity owing to higher twist lowers the strength for thinnest
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Figure 9. The position of fibres in the weakest link of a yarn.

place. Furthermore, the stress concentration at thinnest place
is highest due to less number of fibres. As a consequence,
the load per fibre at the place of the thinnest place is higher
as compared to the fibres of other links. Therefore, yam
breakage is initiated at the thinnest place of the yarn.

A schematic diagram of the position of fibres in the
weakest link of a yam is presented in Figure 9. Actually, at
the place of weakest link, when the generated tension of a
fibre is greater than its breaking load, it will break. It has
been reported by some researchers that the approximate
length of the weakest link lies in between 2-7 mm [17,18].
Now, during the process of yarn failure a slipped fibre in the
weakest link must be slipped. But for a gripped fibre having
one end at the weakest link must be slipped, since it requires
certain distance of a fibre from its end to support the full
tension and usually this distance is greater than the length of
a weakest link of twisted fibre bundle in the yarn [1,19].
Otherwise, a gripped fibre, which passes through a weakest
link, should be broken during yarn rupture.

After breakage of certain number of fibres in the weakest
link broken and slipped fibres do not contribute to bear the
load directly. Thus the stress on surviving fibres concentrates
causing rupture of the gripped fibres to propagate faster.
Consequently, ultimate yarn failure takes place with the
mixed mode of fibre breakage and slippage.

Modeling of Yarn Tenacity
In order to derive the mathematical equation for spun yarn
tenacity as a function of fibre bundle tenacity the following
assumptions are made:
¢ When a yarn is subjected to tensile load, it breaks at the
weakest portion, which comprises the minimum number
of fibres in the cross-section. The thinnest place having
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minimum number of fibres has the lowest torsional stiffness
so that twist tends to concentrate here, leading to more
than optimum twist at this place. Although, higher twist
at this place reduces the fibre slippage, but increased
fibre obliquity predominates over the effect of reduced
fibre slippage leading to lowest strength for thinnest place.
Further stress concentration at thinnest place is highest
due to less number of fibres. As a consequence, the loac
per fibre at the place of the thinnest place is higher as
compared to the fibres of other links. Therefore, it is
logical enough to assume that yarn breakage is initiatec.
at the thinnest place instead of other places in the yarn.
The number of fibre in the yarn cross-section follows a
normal distribution. Thus for 95 % confidence level, the
relationship between the average number of fibres in the
yarn cross-section and number of fibres at the weakes:
portion can be expressed as

n, = n,— 1960 2n

where n,: number of fibres at the place of yarn break, #,:
average number of fibres in the yarn cross-section, o:
standard deviation of number of fibres in the yam cross-
section. Hence, from the definition of coefficient of
variation, equation 3.21 can be transformed into

n, = n(1-0.0196V) 22)

where V' = coefficient of variation of number of fibres in
the yarn cross-section.

The yarn volume remains constant throughout the tensiliz
testing. Hearle [1] has worked out the following
relationship for constant volume deformation:

tan &
tan@'-

372

= (1+¢) (23)

where &= average helix angle of the fibre in the yam
before break, 8’ = average helix angle of fibre at the tims
of yarn failure, £= yarn breaking strain.

Translation of Fibre Tenacity into Yarn Tenacity

To start with the derivation of yarn tenacity from the fibre
bundle tenacity, the first thing to be taken into account is the
length of yarn failure zone. From the yarn elongation at
break and the length of yarn failure zone, the actual length cf
twisted fibre strand over which the breakage of yarn takes
place can be estimated from equation (20).

Let F;, be the fibre bundle tenacity measured at a gauge
length equal to /,, which is the actual length of the weakest
zone in the yarn before the break. But as the fibres have
helical configuration in the yarn, therefore, the contribution
of the fibre bundle tenacity into yam tenacity is Fjcos’6’,
since the tenacity of fibre bundle is defined as its breaking
load per unit effective linear density. A simple representation
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Figure 10. The translation of fibre bundle tenacity to yarn tenacity.

of the translation of fibre bundle tenacity to yarn strength is
shown in Figure 10.

As the yarn rupture zones comprise of both broken and
slipped fibre, therefore, a proportion of broken fibres to the
number of fibres at the place of break has to be multiplied
with the term Fjcos’6’ to get the calculated yarn tenacity.
Moreover, the yarn tenacity is related to the linear density of
yarn which is considerably in excess of that portion of yarn
which actually breaks, and thus the resultant experimental
tenacity of yarn is underestimated. As the yarn linear density
is proportional to the number of fibre in the yarn cross-
section, therefore, to compare the experimental yarn tenacity
and the theoretical yarn tenacity, the later can be expressed
as

0% = Yp cos’g (24)
Ry My
where (: theoretical yarn tenacity (cN/tex), is the number of
broken fibres at the place of yarn fatlure.
Now the percentage broken fibres is related with i as

1y @y
= b 25
100 (25)
where @; is the percentage broken fibres in the yarn failure
zone. By substituting y in equation (24), the theoretical yam
tenacity is expressed as
ny, Py 2
= —=.F, -=—=-cos ¢ 26
0, = -1 Fy- g5 0 (26)
The model provides insight in understanding the mechanism
of failure process of spun yarns from the point of translation
of fibre bundle tenacity into yarn tenacity. The equation (26)
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is based on the assumption that only the broken fibres
contribute to the yarn breaking strength. From the above
discussion, it is clear that the contribution of slipping fibres
on the maximum breaking load of yarn is extensively less as
compared to that of gripped fibres. Therefore, the contribution
of slipping fibres is not taken into account in deriving the
model of yarn tenacity.
Now from the equations (22) and (26), we have

0, = (1-0.019 - V)-Fh-l% o2’ 27)

The equation (27) indicates the relationship of yarn CV%
and yarn tenacity. It is also evident from equation (27) that a
higher value of yarn CV% would reduce the value of
theoretical yarn tenacity.

Conclusions

The overall descriptions present a qualitative explanation
for the mechanism of staple yarn failure. The mechanism
provides a better insight in understanding the failure process
of spun yarns. A mathematical expression for the translation
of fibre bundle tenacity into the tenacity of single yarns has
been proposed. The model provides further insight in
understanding the mechanism of failure process of spun
yarns.
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