• Title/Summary/Keyword: Spring rainfall

Search Result 189, Processing Time 0.024 seconds

Relation of Run- off and Canopy Interception to Rainfall in a Mixed Forest (혼효림(混淆林)에서 강우량(降雨量)이 유출량(流出量) 및 수관차단률(樹冠遮斷率)에 미치는 영향)

  • Lee, Sang Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.36-38
    • /
    • 1977
  • Some characteristics of rainfall interception and surface runoff from total rainfall at a forest stand mixed with Pinus densiflora and Alnus hirsuta in 1975 was analysised and the results obtained are as fellow; 1. The annual interception of rainfall by the forest canopy was 19.3 percent to annual rainfall 1,072.7mm. 2. The rate of rainfall interception in the dry season as spring and early summer was of 20 to 50 percent and less than 15 percent in the rainy season as summer. 3. About 50 percent of rainfall was intercepted in case of less than 10mm of every rainfall by the forest canopy and, in more than 20mm, about 20 percent intercepted.

  • PDF

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

Analyzing the Variability of Spring Precipitation and Rainfall Effectiveness According to the Regional Characteristics (봄철 강수량 및 강수효율의 지역적 특성별 변화분석)

  • Kim, Gwang-Seob;Kim, Jong-Pil;Lee, Gi-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The temporal variability of spring (March, April, May) monthly precipitation, precipitation effectiveness, monthly maximum precipitation, monthly precipitation of different durations, and the precipitation days over several threshold (i.e. 0, 10, 20, 30, 40, and 50 mm/day) of 59 weather stations between 1973 and 2009 were analyzed. Also to analyze the regional characteristics of temporal variability, 59 weather stations were classified by elevations, latitudes, longitudes, river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization. Results demonstrated that trends of variables increase in April and decrease in May except precipitation day. Overall trend of precipitation amount and precipitation effectiveness is same but precipitation effectiveness of several sites decrease despite the trend of precipitation amount increases which may be caused by the air temperature increase. Therefore more effective water supply strategy is essential for Spring season. Regional characteristics of Spring precipitation variability can be summarized that increase trend during May become stronger with the increase of latitude and elevation which is similar to that of Summer season. The temporal variability of variables showed different behaviors according to river basins, inland or shore (east sea, south sea, west sea) area and the level of urbanization.

Chemical Characteristics of Rainfall and Throughfall in Pinus koraiensis and Larix leptolepis Forests in Korea

  • Kim, Min-Sik;Takenaka, Chisato;Park, Ho-Taek;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.2 s.159
    • /
    • pp.96-102
    • /
    • 2005
  • This study evaluated the chemical characteristics of rainfall and throughfall in Pinus koraiensis and Larix leptolepis forests. We analyzed pH, EC, and concentrations of cations and anions in rainfall, throughfall and stemflow collected from both forest types in the experimental forests of the central Korea. The concentrations of chemical elements were much higher in throughfall and stemflow than in rainfall for both forest types, and were significantly different among the seasons. Comparing the chemical elements between the P. koraiensis and L. leptolepis plantations, there were not significantly differences in throughfall, but the concentrations of almost elements of stemflow in P. koraiensis were almost lower than those in L. leptolepis. For seasonal inputs to the forest floor, more than half of the total input of $Ca^{2+}$, ${NO_3}^-$and ${SO_4}^{2-}$ was observed in spring. This suggests that air pollutants such as NOx and SOx accompanying calcium-rich aeolian Yellow Sand (Asian dust) from China could have an important influence on nutrient cycles in Korean forests.

Prediction of fuel moisture change on pinus densiflora surface fuels after rainfall in East sea region. (영동지역 봄철 산불기간 중 소나무림 지표연료의 임내 연료습도변화 예측)

  • Lee, Si-Young;Lee, Myung-Woog;Kwon, Chun-Geun;Yeom, Chan-Ho;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.333-336
    • /
    • 2008
  • This study is the result between the variation of fuel moisture and the risk of forest fire through measuring the change of moisture containing ratio on-site and its average analysis for each diameter of surface dead fuels in the forest. The measurement was performed on six days from the day after a rainfall. The fuel moisture on-site was measured on the day when the accumulated rainfall was above 5.0mm, and the measurements was 2 times in spring. From the pine forest which were distributed around Samcheok and Donghae in Kangwondo, three regions were selected by loose, medium, and dense forest density, and the fuel moisture was measured on the ranges which are less than 0.6cm, 0.6-3.0cm, 3.0-6.0cm, and more than 6.0cm in the forest for six days from the day after a rainfall. The study showed that the moisture containing ratio converged on 3 - 4 days for surface deads fuels which diameter are less than 3.0cm and the convergence was made more than six days for ones which diameters are more than 3.0cm except the surface dead fuel of 3.0-6.0cm diameter of loose forest density.

  • PDF

Changes in temporal and spatial stream water concentrations and analysis on nonpoint source runoff in forested watersheds on non rainfall days (산림소유역 유출수의 비강우일 비점오염물질 농도 변화 및 유출 특성 분석)

  • Yoo, Hyeon-Ju;Choi, Hyung-Tae;Kim, Jae-Hoon;Lim, Hong-Geun;Yang, Hyun-Je
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.137-149
    • /
    • 2020
  • This study was carried out to analyze the monthly runoff concentration on non rainfall days in order to prepare basic data to compare the runoff concentration on rainfall days in 7 forest watersheds in the Republic of Korea. Forest stream water has been collected through 15 times of sampling in each watershed and analyzed based on the changes in concentration of Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Organic Carbon(TOC), Total Nitrogen(TN), and Total Phosphorus(TP). The average concentration was 0.8 mg/L for BOD, 1.4 mg/L for COD, 0.8 mg/L for TOC, 1.85 mg/L for TN and 0.002 mg/L for TP during non rainfall days. Coniferous forested watersheds showed higher value of TN and TP concentration. Concentrations of BOD and TP in early March (p<0.01) were affected by melt water flow input in spring season. Significant differences (p<0.01) in concentrations were observed in BOD and TOC, indicating seasonal rainfall and vegetation growth impacts on forest stream quality. Concentration of TN and TP showed significant positive correlation, and weak negative correlation was found in the concentration of BOD and TOC. It is expected that result of forest stream water on non rainfall days could be basic information in managing non-point source from forest watersheds.

Determination of Important Parameter Control Term for Paldang Lake Water Quality Management using Load Duration Curves (오염부하지속곡선을 이용한 팔당호 수질항목별 중점관리 시점 선정)

  • Kim, Dong Woo;Jang, Mi Jeong;Park, Ji Hyoung;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.762-776
    • /
    • 2013
  • Load duration curve was applied to determine important water quality parameter control term for improvement of Paldang lake water quality. Load duration curve was analyzed with long term data from 1985 to 2012 including water quality, flow rate and climate state of Paldang water environment. From the result of flow rate patterns of paldang lake, differences between high and low flow rate of each year showed tendency of increase because rainfall characteristics of paldang lake watershed were changed by climate exchange. Both of land use state of upper Paldang lake watershed and number of limit excess from load duration curve indicated that seasonal action related with land use such as agricultural fertilizer distribution in upper watershed affected Paldang lake water quality. So focused BOD (biological oxygen demand) management during spring season from march to June is required to control organic materials in Paldand lake. The main affecting factor of TOC (total organic carbon) increase in Paldang lake was initial rainfall after march. T-N (total nitrogen) kept increasing during research period, so enhancement of T-N standard is needed to T-N control. Initial rainfall and increase of temperature during spring season from March to June showed a positive correlation with TP (total phosphorus) and Chl-a, respectively.

A Yield Estimation Model of Forage Rye Based on Climate Data by Locations in South Korea Using General Linear Model

  • Peng, Jing Lun;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.205-214
    • /
    • 2016
  • The objective of this study was to construct a forage rye (FR) dry matter yield (DMY) estimation model based on climate data by locations in South Korea. The data set (n = 549) during 29 years were used. Six optimal climatic variables were selected through stepwise multiple regression analysis with DMY as the response variable. Subsequently, via general linear model, the final model including the six climatic variables and cultivated locations as dummy variables was constructed as follows: DMY = 104.166SGD + 1.454AAT + 147.863MTJ + 59.183PAT150 - 4.693SRF + 45.106SRD - 5230.001 + Location, where SGD was spring growing days, AAT was autumnal accumulated temperature, MTJ was mean temperature in January, PAT150 was period to accumulated temperature 150, SRF was spring rainfall, and SRD was spring rainfall days. The model constructed in this research could explain 24.4 % of the variations in DMY of FR. The homoscedasticity and the assumption that the mean of the residuals were equal to zero was satisfied. The goodness-of-fit of the model was proper based on most scatters of the predicted DMY values fell within the 95% confidence interval.

Seasonal Change Characteristics of Stream Water Quality in Planted Coniferous Forest (침엽수 인공림 계류수 수질의 계절변화 특성)

  • Kim, Jaehoon;Choi, Hyung Tae;Yoo, Jae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.929-935
    • /
    • 2015
  • This study was carried out to investigate pH, EC, solutes concentration and ANC characteristics in coniferous forest experiment watershed in Gyeonggi-do, Korea from 2005 to 2007. The average pH value was 6.87 and low at spring season due to deposition in crown. The average EC was $58.4{\mu}S/cm$ and was high at spring season due to high concentration of solutes. The cation and anion concentration was high at spring and fall season with low rainfall. When stream water quality was compared to different watershed, EC was relatively low due to high rainfall and $NO_3{^-}$ was high due to deposition and forest practice. pH and ANC was relatively constant at stream water

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.