• Title/Summary/Keyword: Spring load

Search Result 572, Processing Time 0.028 seconds

Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load (스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가)

  • Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.200-204
    • /
    • 2016
  • In this paper, we have estimated the performance of an overflow valve for EURO type CRDI(common rail direct injection) engine. In order to implement the overflow valve with friendly circumstance, it is necessity for considering spring load. Especially, the performance evaluation of diesel car with accuracy control will be considered a mileage improvement and circumstance regulation. In order to evaluate the performance of overflow valve, The leak test system checks the pressure, switching time and operating time under 3.0 bar below 100 cc, 3.3 bar among 150 cc and 200 cc, finally 4.0 bar upper 250 cc.

Optimal Design of High-Capacity Column-Type Load Cell Using Response Surface Method (반응표면법을 이용한 고하중 기둥형 로드셀의 치적설계)

  • 이태현;이태희;변철웅;박준구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.754-758
    • /
    • 2002
  • According to the enlargement of production facilities and structures, the requirements of high-capacity load cells are increased for monitoring the process conditions in many fields. Generally, however, the accuracy of the column-type high-capacity load cells is not enough due to the geometric nonlinearity. It is supposed to result from the fact that the whole spring element is under high-level stress for the uniform strain field. In this paper, a new shape of spring element is developed which utilizes the stress concentration. As a design criterion, an object function which quantifies the degree of nonlinearity is defined and optimized by use of response surface modeling. As a result, the weight of the spring element is reduced shout 50% in comparison to the conventional shape. The bonding positions of stain gages are found. which show theoretically zero geometrical nonlinearity, while the ratio of overload protection is reduced from 130% to 125% Also it is shown that the response surface method is very efficient in the optimization approach by use of FEM.

  • PDF

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Impact and Fatigue Analysis of Superposed Leaf Spring in Electric Power Switch (전력 개폐기의 중첩 판 스프링의 충격 피로 해석)

  • Park W.J.;Ahn K.Y.;Jeong K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.794-797
    • /
    • 2005
  • The automatic load transfer switch (ALTS), a kind of electric power switch, typically automatically transfers electrical loads from a normal electrical power source to an emergency electrical power source upon reduction or loss of normal power source voltage. It can also automatically re-transfer the load to the normal power source when the normal voltage has been restored within acceptable limits. The transfer operation of ALTS is accomplished by a spring-driven linkage mechanism. In order to control or delay the transfer switching time, the ALTS studied in this paper uses the superposed leaf springs, which are subjected to impact leadings in contacting with electrical contacts. Therefore, to confirm whether the springs has enough mechanical endurance in ALTS, we build a finite element model of the superposed lear springs using LS-DYNA and perform the impact and fatigue analysis.

  • PDF

Lamb Wave Inspection for Crack Detection in Coil Spring of Automobile Suspension System (자동차 현가 장치용 스프링의 신뢰성 평가를 위한 Lamb Wave 크랙검사)

  • 문병준;김노유
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.227-233
    • /
    • 2002
  • Suspension system is one of the most important components indespensible for stability and reliability of automobiles. The demands to more safe and durable suspension system have been increased as the automobiles get popular and improve in quality. The crack in the coil spring of the suspension system produced during manufacturing may grow under a fatigue load and cause a severe safety problems which lead to a catastrophic damage to the passengers. Many conventional NDT techniques including ET, RT, and UT are less sensitive or hard to apply to detect the surface breaking crack in the suspension coils partly because the techniques are point-to-point measurement methods, thus take too long time to inspect the coil spring longer than 1m. Contrary to this, Lamb wave technique is full-field measurement method that make it possible to examine the whole coil spring in real time. In this paper, the Lamb wave is applied to the coil spring to investigate the possibility to detect the cracks on the surface of the coil spring.

  • PDF

A study on the testing methods of air spring for railway rolling stock (철도차량용 공기스프링 시험방법 규격안에 대한 연구)

  • Hur Hyun-Moo;Kwon Sung-Tae;Choi Kyung-Jin;Kim Wan-Doo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.339-344
    • /
    • 2003
  • Air spring for railway rolling stock is a part of secondary suspension system, which is supporting load, damping vibration. Recently, air springs are actively applied to railway rolling stock to substitute the coil spring by upgrading the manufacturing skill. This study is started to develop draft for the testing methods of air spring for railway rolling stock. We have tested several items on testing methods to guarantee the performance of air spring. Thus, we have developed the test draft for air spring.

  • PDF

Development of a Torsion Joint Yoke for Motor-Driven Power Steering System Using a Double-Action Extrusion Process (더블-액션 압출공정을 적용한 전동조향장치용 토션조인트 요크 개발)

  • Kim, H.M.;Kim, Y.K.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.473-478
    • /
    • 2012
  • The yoke, a component of conventional motor-driven power steering system, often contains welding defects from its manufacturing process. To eliminate these defects, the precision cold forging process has been tried. In this study, the double-action complex forging has been used to manufacture a torsion joint yoke. The backward extrusion proved faster than the forward extrusion in forging of the product. The double-action complex forging process utilized an upper die composed of a punch, a punch guide, a disc spring and a coil spring. The forged material pushes up the punch guide, and then the disc spring and the coil spring balances the backward extrusion force. Consequently, the flow of material was essentially in the forward direction, resulting in a successful forging operation. The forging load of Al 6061-T6 was higher than that of the automotive structural hot rolled plate.

RBSN Analysis Model of Asphalt Pavement Retrofitted with Civil Fiber (토목섬유로 보강된 아스팔트 포장의 RBSN 해석 모델)

  • Han, Sang-Hoon;Kwak, So-Shin;Kwon, Yong-Kil;Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • This paper presents a simple and efficient two-dimensional rigid-body-spring network model able to accurately estimate the fractural behavior of civil fiber reinforced pavements. The proposed rigid-body-spring network model, denoted as RBSN model, considers civil fiber reinforcing materials using the beam elements and link spring elements. The RBSN method is able to model collapse due to asphalt crushing and civil fiber slip. The RBSN model is used to predict the applied load-midspan deflection response of civil fiber retrofitted asphalt specimen subjected to the three-point bending. Numerical simulations and experimental measurements are compared to based on tests available in the literature. The numerically simulated responses agree significantly with the corresponding experimental results until the maximum load. However, It should be mentioned that, in order to more accurately predict the postpeak flexural behavior of the civil fiber retrofitted asphalt pavement, development of the advanced model to simulate the slip relationship between civil fiber and asphalt is required.

Stability of Stepped Columns Subjected to Nonconservative Force (비보존력이 작용하는 불연속 변단면 기둥의 안정성)

  • Oh, Sang-Jin;Mo, Jeong-Man;Lee, Jae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of stepped cantilever columns with a tip mass of rotatory inertia and a translational spring at one end. The column model is based on the Bernoulli-Euler theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibration of columns with stepwise variable cross-section and subjected to a subtangential follower force is solved numerically using the corresponding boundary conditions. And the bisection method is used to calculate the critical divergence/flutter load. The frequency and critical divergence/flutter load for the stepped column with a single step are presented as functions of various non-dimensional system parameters: the segmental length parameter, the section ratio, the subtangential parameter, the mass, the moment of inertia of the mass, and the spring parameter.

  • PDF

Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 성능특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.