• 제목/요약/키워드: Spring load

검색결과 572건 처리시간 0.033초

변단면 Beck 기둥의 동적안정 해석 (Dynamic Stability Analysis of Tapered Beck Columns)

  • 이병구;이태은;강희종;김권식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of tapered columns with clamped one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck columns is derived using the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter, mass ratio and spring stiffness.

  • PDF

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

Heave Compensation System Design for Offshore Crane based on Input-Output Linearization

  • Le, Nhat-Binh;Kim, Byung-Gak;Kim, Young-Bok
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.27-34
    • /
    • 2017
  • A heave motion of the offshore crane system with load is affected by unpredictable external factors. Therefore the offshore crane must satisfy rigorous requirements in terms of safety and efficiency. This paper intends to reduce the heave displacement of load position which is produced by rope extension and sea wave disturbance in vertical motion. In this system, the load position is compensated by the winch actuator control. The rope is modeled as a mass-damper-spring system, and a controller is designed by the input-output linearization method. The model system and the proposed control method are evaluated on the simulation results.

Eddy current 동력계의 부하와 와전류의 직진성 관련 연구 (Linearity study for the field coil current and the load of eddy current dynamometer)

  • 문병수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.66-72
    • /
    • 2000
  • Commercial eddy current dynamometers control the torque of ratating body (poer supply machine) with the field coil current being operated as a braking force. In this paper, we studied about the relation between the field coil current and the torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer, it is linear relation between the brake force measured from the torque meter (e.g. load cell, strain gage or spring balance etc.) which is installed at the case of dynamometer and the multiply of shaft rpm by the square of field coil current (N$\times$Ia2). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measures the torque of rotating body without special torque measuring devices.

  • PDF

축하중을 고려한 단순보상의 이동탄성계의 진동해석 (Dynamic behavior of moving Elastic Body System on Simple Beam with Axial Load)

  • 김영수
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.67-73
    • /
    • 2000
  • The dynamic behavior of a moving elastic body system with three constant velocitics on a simple beam with an axial load is analyzed by numerical method. A moving elastic body system is composed of an elastic body and a suspension unit with two unsprung masses. The governing equations are derived with an aid of Lagrange's equation. These equation are solved by Runge-Kutta method. The damping coefficients a spring constants of the suspension unit the force circular frequency on a moving elastic body the velocity of a moving elastic body system. These effects are more important in the high modes of a simple beam.

  • PDF

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

후방 요추 극돌기간 유동적 오메가형 스프링 고정재의 역학적 평가 (Mechanical Evaluation of Posterior Dynamic Omega-wire Stabilization System)

  • 이연수;송근수
    • 대한기계학회논문집B
    • /
    • 제36권11호
    • /
    • pp.1099-1104
    • /
    • 2012
  • 본 연구에서는 새로운 후방요추간체의 고정재로서 뼈에 나사를 삽입고정하지 않고 후방요추간체에 걸어 시술하는 형상기억합금을 이용한 오메가형 스프링 유동적 고정재의 기계적 변형특성을 평가하였다. 사용된 오메가와형 스프링 고정재에 대해 인장, 압축, 동적피로시험을 실시하였다. 또한, 기존에 시판 중인 후방요추간체에 나사를 삽입하여 시술되는 나선형 스프링 유동적 고정재와 함께 유한요소방법을 이용하여 허리를 굽힐 때 가해지는 굽힘에 대한 변형해석을 실시하였다. 오메가형 스프링 고정재의 양단 고리중심간 거리가 60 mm인 시편의 평균 극한 인장하중은 3981.7 N, 평균 극한 압축하중은 535.6 N으로 나타났으며, 5 Hz의 반복주기로 10 N/1N의 압축피로하중을 가할 경우 5백만회 반복하는 동안 파단 없이 8~9 mm의 압축변위가 발생하였다. FEA 결과에서 보면 오메가형 스프링 고정재가 나선형 스프링 고정재보다 허리 굽힘에 대해 유연한 변형특성을 보였다.

固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향 (Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass)

  • 윤한익;김광식
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.606-612
    • /
    • 1985
  • 본 논문에서는 전보의 연속으로서 말단질량이 부착된 기둥의 자유단에 압축 종동력이 작용하는 비보존적 탄성계의 불완전 고정단에 나타나는 스프링 특성의 영향 을 연구하였다. 고정단은 병진스프링과 회전스프링으로 구속되었고, 이들 스프링 상 수의 여러 값이 말단질량과 연성(coupling)되어 기둥의 안정성에 미치는 영향을 연구 하였다. 기둥의 전단변형과 회전관성의 영향을 고려하였으며, Hamilton's principle 로서 계의 운동방정식과 경계조건의 식을 유도하여 수치해석하였다.

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

외기냉방을 이용한 냉방부하 절감 연구 (Reduction of Cooling Load using Outdoor Air Cooling)

  • 김민용;김영일;정광섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.51-58
    • /
    • 2011
  • Due to enhanced sealing and insulation of buildings, extensive use of glasses for building envelopes and increased use of heat generating office equipments, energy consumption of modem buildings for cooling is steadily increasing. With outdoor air cooling(ODAC) system, cooling load can be reduced by exchanging indoor air with the cold outdoor air during spring and fall seasons. If ODAC is operated based only on temperature, total cooling load may virtually increase if the outdoor humidity is high. To overcome this problem, ODAC should be controlled based on enthalpy. In this work energy saving characteristics of enthalpy controlled ODAC is studied using dynamic simulation. The result shows that cooling load can be reduced by 27% by adopting ODAC.