• 제목/요약/키워드: Spring load

검색결과 571건 처리시간 0.025초

전동차용 방진고무스프링 특성평가 및 사용수명 예측 (Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle)

  • 우창수;박동철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF

Design and Analysis of a Vibration-driven AA Size Electromagnetic Energy Harvester Using Magnetic Spring

  • Foisal, Abu Riduan Md.;Chung, Gwiy-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.125-128
    • /
    • 2012
  • This paper describes the design, simulation and characterization of an AA size electromagnetic energy harvester that is capable of converting environmental vibration into electrical energy. A magnetic spring technique is used to scavenge energy from low frequency external vibrations. The generator is characterized by ANSYS 2D finite element analysis, and optimized in terms of moving mass, fixed magnet size, coil width and load resistance. The optimized energy harvester is able to generate 53.5 mW of average power at 8.1 Hz resonance frequency, with a displacement of 0.5 mm.

상용차 시트용 X-형 구조 마그네틱 현가기구의 최적 설계 및 성능평가 (Optimal Design and Performance Evaluation of X-type Magnetic Spring Suspension for Commercial Vehicle Seat)

  • 곽이구;김홍건;송정상;신희재;서민강;김병주;안계혁;이혜민;한웅
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.456-464
    • /
    • 2014
  • Commercial vehicle drivers typically feel more fatigued compared to general-public drivers. because they spend longer periods of time driving and experience more rough road conditions. This study showed that the application of a magnet, a linear spring, and a seat suspension with nonlinear characteristics was the optimal design to increase comfort while driving. The resonant frequency for the optimal design suspension was 2.8 Hz, and the stiffness was analyzed through displacement-load experiments. Vibration transmissibility was analyzed by suspension stiffness and the existing dynamic compression. The magnetic spring type was at 0.875. As a result, the X-type magnetic spring performed better than the existing spring at 0.729.

축상스프링 노화에 따른 탈선안전도 영향 분석 (Analysis of Influence on Derailment due to Primary Spring Aging)

  • 허현무;신유정;유원희;박준혁
    • 한국철도학회논문집
    • /
    • 제20권3호
    • /
    • pp.320-328
    • /
    • 2017
  • 철도차량에 폭 넓게 적용되고 있는 축상고무스프링의 노화에 따른 탈선안전도 영향을 분석하고자 노화 축상고무스프링 시료를 대상으로 특성시험을 수행하였다. 그리고 축상고무스프링 노화가 탈선 안전에 미치는 영향을 분석하기 위하여 주행 동특성 해석을 수행하였다. 사용연수 17년이 지난 롤고무 축상스프링 시료를 대상으로 한 상하방향 특성시험결과, 고무 노화로 인하여 변위 복원기능이 저하되었고 스프링강성이 현저히 증가하였다. 그리고 EN14363규격 적용 twist궤도 주행 시를 모사한 주행동특성 해석결과, 정상 차량모델(Case1)에 비하여 노화 축상스프링 특성을 적용한 차량모델(Case2)의 탈선계수와 윤중감소가 증가하여 탈선안전도는 저하하였다. 특히 급격한 선형 변동이 발생하는 천이구간 주행 시 윤중감소로 인한 탈선안전도는 취약하게 나타났다.

Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과 (Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis)

  • 김영현;박은영;김원현;황성필;박경우;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

이형단면 코일 스프링의 응력해석 (Stress Analysis of a Coil Spring with Nonlinear Section)

  • 이인혁;한동철
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1831-1838
    • /
    • 1991
  • 본 연구에서는 와핑과 두 단면중심의 불일치에 의해 발생하는 기하중심의 이 동을 고려한 등매개변수보요소를 개발하여 스프링단면의 응력해석을 수행하고 그 결과 를 다음과 같이 검증할 것이다.우선 본 연구에 사용된 보요소가 이 두 효과를 효과 적으로 표현하고 있는지를 확인하기 위해서 간단한 비틀림실험과 비교할 것이다. 또 한 2차원문제에 대해서 입체요소를 이용한 결과와 비교하고, 원통형 스프링모델의 해 석결과를 Nagaya의 해석결과와 비교함으로써 실제 스프링해석에 효과적으로 적용될 수 있음을 보일 것이다.

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

CFD 유동해석을 이용한 누설 저감을 위한 증기터빈용 플렉시블 패킹링 개발 (Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis)

  • 김진형;배준호;이창렬;김철
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.741-748
    • /
    • 2013
  • A conventional packing ring was designed with a large clearance to prevent damage due to the vibration of the rotor, which can lead to an increase in steam leakage. In this study, a flexible packing ring using winding springs was developed to prevent damage to the rotor teeth by minimizing vibration, while maintaining a smaller clearance than that of conventional rotor designs. Theoretical analysis and finite element analysis (FEA) were used to design the winding spring to satisfy the specified allowable stress limit and minimum load requirements. The shape of the winding spring was designed by applying curves to the center and end parts of a flat spring. Computational fluid dynamics (CFD) analysis was used to predict the leakage of the flexible packing ring. Flow rate measurement tests were performed to verify the leakage reduction efficiency and the reliability of the CFD analysis.

수송 트레일러의 충격흡수장치 개발 (IV) - 동력경운기 적재함의 연결히치, 판스프링, 쇽업쇼바 - (Development of Vibration Absorption Device for the Transportation-Trailer System (IV) - Connecting Hitch, Leaf Spring and Shock Absorber Suspension -)

  • 홍종호;오영근
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.359-364
    • /
    • 2012
  • Purpose: This study was conducted to analyze the vibration absorption effect for the agricultural product transportation-trailer equipped with vibration absorbable connecting hitch, leaf spring suspension, and shock absorber simultaneously (HLS), comparing with the trailer equipped with vibration absorbable connecting hitch only(H), trailer equipped with connecting hitch and leaf spring suspension (HL), and existing trailer with no vibration absorption device (E). Methods: Vertical accelerations were measured at driver seat and front, middle, rear parts of trailer bottom with no load for 4 types of transportation-trailer, and analyzed using FFT analyzer. Results: The magnitude of average vibration accelerations occurred up to 20 Hz, at this low frequencies the severe damage for agricultural products could be represented, was lower (maximum 6 times) for HLS trailer compared with H trailer. And vibration absorption effect for HLS trailer was also higher up to 40-80 Hz and 80-100 Hz, but the difference was less. At driver seat, the vibration absorption effect was high severely for HL and HLS trailer, and the magnitude of vibration acceleration was showed less difference in comparing at trailer bottom. Conclusions: From the test results, it could be recommended that the agricultural products transportation trailer should be equipped with vibration absorption device of HLS.

부하외란이 가해지는 전기.유압서보계의 속도 제어에 관한 연구 (A Study on the Speed Control of Electro - hydraulic Servo System under Load Disturbance)

  • 하석홍;권기수;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.26-32
    • /
    • 1993
  • The loads exerted on electro-hydraulic servo system are classified into inertial, viscous, and spring load. The additional load called disturbances is also exerted on system but is generally not modeled. To deal with these kinds of loads, it is necessary to maintain the continuous signal transfer, so we can construct compensator to satisfy control specifications using feedback signal such as displacement, velocity, acceleration and pressure known as state variables. In case of controlling the speed of hydraulic motor, we must keep up robust performance for the various loads and disturbances acted on the system. However, the load flow rate in the valve is characterized by nonlinearity so that traditional theory of linear control could not be expected to give the desired performance. In this paper, it is shown that speed controller of hydraulic motor gives a good command following and disturbance rejection performance by applying sliding mode theory as a way of robust control to the nonlinearity, variation of loads and disturbances.

  • PDF