• 제목/요약/키워드: Spring drought

검색결과 114건 처리시간 0.018초

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제21권4호
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.

A Study of Spring Drought Using Terra MODIS Satellite Image - For the Soyanggang Dam Watershed - (Terra MODIS 위성영상을 이용한 봄 가뭄 연구 - 소양강댐유역을 대상으로 -)

  • SHIN, Hyung-Jin;PARK, Min-Ji;HWANG, Eui-Ho;CHAE, Hyo-Sok;PARK, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제18권4호
    • /
    • pp.145-157
    • /
    • 2015
  • In 2015, drought was at the worst stage of devastation in Soyanggang Dam watershed. The purpose of this study is to trace the drought area around Soyanggang dam watershed by using Terra MODIS image because it has the ability of spatio-temporal dynamics. The MODIS indices, which included the enhanced vegetation index (NDVI), were extracted from MODIS product MOD13 16-day composite datasets with a spatial resolution of 250m from 2010.01.01 to 2015.06.30. We found that application of Vegetation Condition Index (VCI) and Standardized Vegetation Index (SVI) was suitable for monitoring the drought area. The result can be used to acquire the drought data scattered and demonstrate the potential for the use of MODIS data for temporal and spatial detection of drought effects.

Developing drought stress index for monitoring Pinus densiflora diebacks in Korea

  • Cho, Nanghyun;Kim, Eunsook;Lim, Jong-Hwan;Seo, Bumsuk;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • 제44권3호
    • /
    • pp.115-125
    • /
    • 2020
  • Background: The phenomenon of tree dieback in forest ecosystems around the world, which is known to be associated with high temperatures that occur simultaneously with drought, has received much attention. Korea is experiencing a rapid rise in temperature relative to other regions. Particularly in the growth of evergreen conifers, temperature increases in winter and spring can have great influence. In recent years, there have been reports of group dieback of Pinus densiflora trees in Korea, and many studies are being conducted to identify the causes. However, research on techniques to diagnose and monitor drought stress in forest ecosystems on local and regional scales has been lacking. Results: In this study, we developed and evaluated an index to identify drought and high-temperature vulnerability in Pinus densiflora forests. We found the Drought Stress Index (DSI) that we developed to be effective in generally assessing the drought-reactive physiology of trees. During 2001-2016, in Korea, we refined the index and produced DSI data from a 1 × 1-km unit grid spanning the entire country. We found that the DSI data correlated with the event data of Pinus densiflora mass dieback compiled in this study. The average DSI value at times of occurrence of Pinus densiflora group dieback was 0.6, which was notably higher than during times of nonoccurrence. Conclusions: Our combination of the Standard Precipitation Index and growing degree days evolved and short- and long-term effects into a new index by which we found meaningful results using dieback event data. Topographical and biological factors and climate data should be considered to improve the DSI. This study serves as the first step in developing an even more robust index to monitor the vulnerability of forest ecosystems in Korea.

Bivariate Drought Frequency Analysis to Evaluate Water Supply Capacity of Multi-Purpose Dams (이변량 가뭄빈도해석을 통한 다목적댐의 용수공급능력 평가)

  • Yu, Ji Soo;Shin, Ji Yae;Kwon, Minsung;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제37권1호
    • /
    • pp.231-238
    • /
    • 2017
  • Water supply safety index plays an important role on assessing the water supply capacity of hydrologic system. Due to the absence of consistent guidance, however, practical problems have been brought up on data period used for dam design and performance evaluation. Therefore, this study employed bivariate drought frequency analysis which is able to consider drought severity and duration simultaneously, in order to evaluate water supply capacity of multi-purpose dams. Drought characteristics were analyzed based on the probabilistic approach, and water supply capacity of five multi-purpose dams in Korea (Soyang River, Chungju, Andong, Daecheong, Seomjin River) were evaluated under the specific drought conditions. As a result, it would be possible to have stable water supply with their own inflow during summer and fall, whereas water shortage would occur even under the 1-year return period drought event during spring and winter due to low rainfall.

Long-term drought modifies carbon allocation and abscisic acid levels in five forest tree species

  • Umashankar Chandrasekaran;Kunhyo Kim;Siyeon Byeon;Woojin Huh;Ah Reum Han;Young-Sang Lee;Hyun Seok Kim
    • Journal of Ecology and Environment
    • /
    • 제47권4호
    • /
    • pp.241-249
    • /
    • 2023
  • Background: This study analyzed the drought responses of five forest tree species grown in Korean peninsula, Korean fir Abies koreana (Ak), eastern white pine Pinus strobus (Ps), keyaki Zelkova serrata (Zs), tulip tree Liriodendron tulipifera (Lt), and Japanese elm Ulmus japonica (Uj). Physiological (chlorophyll, root collar diameter [RCD]) and biochemical responses (non-structural carbohydrates, proline, lipid peroxidase and abscisic acid [ABA]) of the plants grown under mild (MD) and severe drought (SD) were compared. Results: In this study, three soil moisture regimes: control (100% precipitation), MD (60% reduction in precipitation) and SD (20% reduction in precipitation) were applied. Soil moisture content showed high water content in control site compared to MD and SD. A decline in RCD was found for Korean fir, keyaki, and tulip plants, with eastern white pine and Japanese elm showing no significant decline to the prolonged drought exposure (both MD and SD). Total chlorophyll showed a significant decline in Korean fir and tulip, with the sugar levels indicating a significant increase in Korean fir and keyaki species under SD compared to control plants. Non-significant decline in sugar level was noted for eastern white pine and Japanese elm. High accumulation of ABA, malondealdehyde and proline was noted in Korean fir, tulip, and keyaki under SD compared to control. Signs of tree mortality was only observed in Korean fir under MD (38%) and SD (43%). Conclusions: The observed findings indicate the drought responses of five tree species. The majority of the morpho-physiological (especially mortality) and biochemical variables assessed in our study indicate superior long-term drought resistance of Ps and Uj compared to the highly sensitive Ak, and moderately sensitive Lt and Zs. The results provided will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.

Analysis on Trends, Periodicities and Frequencies of Korean Drought Using Drought Indices (가뭄지수를 활용한 한반도 가뭄의 경향성, 주기성 및 발생빈도 분석)

  • Lee, Joo-Heon;Seo, Ji-Won;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • 제45권1호
    • /
    • pp.75-89
    • /
    • 2012
  • This study attempted to analyze statistical characteristics of historical drought of Korea through trend, periodicity and drought spell analysis by using the drought indices. Standard Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) were calculated using weather data of 59 weather stations under Korea Meteorological Administration (KMA). As a result of analysis, SP13 and SP16 showed trend of drier spring, drier winter and wetter summer in all basin of Korea. However, SPI12 and PDSI showed different trends with shorter duration drought indices. In case of wavelet transform analysis for drought periodicities, in a band of 1~2 years or below 6 years showed significant spectrum. SP13 showed strongest power spectrum near the band of 1~2 year variance, and SPI12 and PDSI showed 6 years periodicities. The results from drought spell showed that Nakdong River Basin, Geum River Basin and Youngsan River Basin were appeared as severe drought vulnerable area of Korea.

Relationship between Korean Drought and North Pacific Oscillation in May (한국 5월 가뭄과 북태평양진동의 연관성)

  • Choi, Ki-Seon;Kim, Do-Woo;Lee, Ji-Sun;Byun, Hi-Ryong
    • Atmosphere
    • /
    • 제19권1호
    • /
    • pp.67-78
    • /
    • 2009
  • A strong negative correlation has been detected between the North Pacific Oscillation Index (NPI) and the Effective Drought Index (EDI) in May over Korea. In May of positive NPI year, anomalous patterns caused a drought in Korea as follows: the anomalous south-low, north-high low-level pressure patterns in the northeast and southeast of Korea have strengthened the anomalous northerlies to Korea. In addition, these anomalous northerlies have prevented western North Pacific (WNP) high from moving northward. As a result, anomalous descending flows have strengthened in the mid-latitude region in East Asia. In the WNP, the anomalous south-high, north-low sea surface temperature (SST) has been widely distributed, which has strengthened anomalous south-low, north-high low-level pressure patterns. These anomalous characteristics of pressure and SST patterns observed in May of positive NPI years have already been detected in previous winter (December-February) and early spring (March, April). In addition, the anomalous negative sea ice concentration in the North Pacific during two seasons has strengthened the anomalous anticyclonic circulation in the same region and in turn made a contribution to formation of anomalous south-low, north-high pressure patterns in May.

The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery (위성영상의 토양수분 정보와 공간적 요인을 고려한 가뭄 민감도 분석)

  • 박은주;황철수;성정창
    • Spatial Information Research
    • /
    • 제10권3호
    • /
    • pp.481-492
    • /
    • 2002
  • The severity and spatial Patterns of spring drought on the croplands arc investigated using satellite imagery(Landsat ETM+). It is necessary to analyze the area droughty conditions in order to decrease the damage and make the efficient policies. In this context, the information about soil moisture levels, which were fatal factors to the crop growth, was acquired from wetness calculated from Tasseled cap transformation. We confirmed that the wetness values have a strong correlation with NDVI and the principal components. The result showed that the intensity of vegetation covering the surface could be understood as the index of the impacts of drought on croplands and these relationships were effective to classify dry areas in satellite imagery.

  • PDF

Hydrological Drought Analysis and Monitoring Using Multiple Drought Indices: The Case of Mulrocheon Watershed (수문학적 가뭄감시 및 해석을 위한 다양한 가뭄지수 평가 -물로천 유역을 중심으로-)

  • Lee, Joo-Heon;Park, Seo-Yeon;Kim, Min Gyu;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제41권5호
    • /
    • pp.477-484
    • /
    • 2021
  • Due to climate change, parts of Korea are experiencing large and small droughts every 2-3 years and extreme droughts every 7 years. Since most droughts occur mainly in areas where small water supply facilities in the tributaries or upstream are located, more research on technology for securing water in these areas is required. In this study, a drought evaluation using SPEI (Standardized Precipitation Evapotranspiration Index), SDI (Streamflow Drought Index), and WBDI (Water Budget-based Drought Index) was performed to investigate hydrological drought in the Mulrocheon watershed of Chuncheon, a vulnerable area in terms of water supply. As a result of calculating hydrological drought indices SPEI and SDI, examining each duration, it was confirmed that the common drought in 2014 did not recover and continued until 2015. In the hydrological drought index evaluation result by WBDI, a very severe drought condition was observed in the spring of 2015 following 2014, and that drought was the most severe at -1.94 in November 2017. As a result of deriving a SDF (Severity-Duration-Frequency) curve through frequency analysis by duration using the drought index calculated on a monthly basis from 2003 to 2019 (17 years), most droughts in the Mulrocheon watershed were found to have a return period of less than 10 years, but droughts that occurred in 2014, 2015, and 2019 were found to cover more than 20 years, respectively.

Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model (베이지안 네트워크 모형을 이용한 낙동강 유역의 가뭄과 수질관리의 인과관계에 대한 확률론적 평가)

  • Yoo, Jiyoung;Ryu, Jae-Hee;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • 제54권10호
    • /
    • pp.769-777
    • /
    • 2021
  • This study investigated the change of the achievement rate of the target water quality conditioned on the occurrence of severe drought, to assess the effects of meteorological drought on the water quality management in the Nakdong River basin. Using three drought indices with difference time scales such as 30-, 60-, 90-day, i.e., SPI30, SPI60, SPI90, and three water quality indicators such as biochemical oxygen demand (BOD), total organic carbon (TOC), and total phosphorus (T-P), we first analyzed the relationship between severe drought occurrence water quality change in mid-sized watersheds, and identified the watersheds in which water quality was highly affected by severe drought. The Bayesian network models were constructed for the watersheds to probabilistically assess the relationship between severe drought and water quality management. Among 22 mid-sized watersheds in the Nakdong River basin, four watersheds, such as #2005, #2018, #2021, and #2022, had high environmental vulnerability to severe drought. In addition, severe drought affected spring and fall water quality in the watershed #2021, summer water quality in the #2005, and winter water quality in the #2022. The causal relationship between drought and water quality management is usufaul in proactive drought management.