• Title/Summary/Keyword: Spring drought

Search Result 114, Processing Time 0.02 seconds

Correlation Analysis of MODIS Vegetation Indices and Meteorological Drought Indices for Spring Drought Monitoring

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.80-83
    • /
    • 2008
  • Diverse researches using vegetation index have been carried out to monitor spring droughts that have frequently occurred since 2000. The strength of the drought monitoring using vegetation index lies in that it can reflect characteristics of satellite images: large area coverage, cyclicity, and promptness. However, vegetation index involve uncertainly caused by diverse factors that affect vegetation stress. In this study, multi-temporal vegetation index is compared with the most representative meteorological drought indices like PSDI, SPI. Based on the results from analyses, usability of vegetation index as a tool of drought analysis is proposed.

  • PDF

An Outlook of Agricultural Drought in Jeonju Area under the RCP8.5 Projected Climate Condition (기후변화 시나리오에 근거한 전주지역의 농업가뭄 전망)

  • Kim, Dae-jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • In order to figure out the future drought characteristics of the Jeonju plains, the major crop production area in Korea, daily agricultural drought indexes based on soil water balance were calculated for the relevant 12.5 km by 12.5 km grid cell using the weather data generated by the RCP8.5 climate scenario during 1951-2100. The calculations were grouped into five climatological normal years, the past (1951-1980), the present (1981-2010), and the three futures (2011-2040, 2041-2070, and 2071-2100). Results showed that the soil moisture conditions in early spring, worst for both the past and present normal years, will ameliorate gradually in the future and the crop water stress in spring season was projected to become negligible by the end of this century. Furthermore, the drought frequency in early spring was projected to diminish, resulting in rare occurrence of spring drought by that time. However, the result also showed that the soil moisture conditions during the summer season (when most crops grow in Jeonju plain) will deteriorate and the drought incidence will be more frequent than in the past or present period.

Improvement of Drought Operation Criteria in Agricultural Reservoirs (농업용 저수지 이수관리를 위한 저수율 가뭄단계기준 개선)

  • Mun, Young-Sik;Nam, Won-Ho;Woo, Seung-Beom;Lee, Hee-Jin;Yang, Mi-Hye;Lee, Jong-Seo;Ha, Tae-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Yield Comparison Simulation between Seasonal Climatic Scenarios for Italian Ryegrass (Lolium Multiflorum Lam.) in Southern Coastal Regions of Korea (우리나라 남부해안지역에서 이탈리안 라이그라스에 대한 계절적 기후시나리오 간 수량비교 시뮬레이션)

  • Kim, Moonju;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This study was carried out to compare the DMY (dry matter yield) of IRG (Italian ryegrass) in the southern coastal regions of Korea due to seasonal climate scenarios such as the Kaul-Changma (late monsoon) in autumn, extreme winter cold, and drought in the next spring. The IRG data (n = 203) were collected from various Reports for Collaborative Research Program to Develop New Cultivars of Summer Crops in Jeju, 203 Namwon, and Yeungam from the Rural Development Administration - (en DASH). In order to define the seasonal climate scenarios, climate variables including temperature, humidity, wind, sunshine were used by collected from the Korean Meteorological Administration. The discriminant analysis based on 5% significance level was performed to distinguish normal and abnormal climate scenarios. Furthermore, the DMY comparison was simulated based on the information of sample distribution of IRG. As a result, in the southern coastal regions, only the impact of next spring drought on DMY of IRG was critical. Although the severe winter cold was clearly classified from the normal, there was no difference in DMY. Thus, the DMY comparison was simulated only for the next spring drought. Under the yield comparison simulation, DMY (kg/ha) in the normal and drought was 14,743.83 and 12,707.97 respectively. It implies that the expected damage caused by the spring drought was about 2,000 kg/ha. Furthermore, the predicted DMY of spring drought was wider and slower than that of normal, indicating on high variability. This study is meaningful in confirming the predictive DMY damage and its possibility by spring drought for IRG via statistical simulation considering seasonal climate scenarios.

Analysis of Spring Drought Using NOAA/AVHRR NDVI for North Korea (NOAA/AVHRR NDVI를 이용한 북한지역 봄 가뭄 분석)

  • Jang, Min-Won;Yoo, Seung-Hwan;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.21-33
    • /
    • 2007
  • Different vegetation indices from satellite images have been used for monitoring drought damages, and this study aimed to develop a drought index using NOAA/AVHRR NDVI(Normalized Difference Vegetation Index) and to analyze the temporal and spatial distribution of spring drought severity in North Korea from 1998 to 2001. A new drought index, DevNDVI(Deviation of NDVI), was defined as the difference between a monthly NDVI and average monthly NDVI at the same cover area, and the DevNDVI images at all years except for 2001 demonstrated the drought-damaged areas referred from various domestic and foreign publications. The vegetation of 2001 showed high vitality despite the least amount of rainfall among the target years, and the reason was investigated that higher temperature above normal average would shift the growing stages of plants ahead. Therefore, complementary methods like plant growth models or ground survey data should be adopted in order to evaluate drought-induced plant stress using satellite-based NDVI and to make up far the distortion induced by other environments than lack of precipitation.

Development of Wheat Breeding Material Mediated wide Hybridization Response to Climate Change

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.293-293
    • /
    • 2022
  • This study is to develop new wheat breeding material through wide hybridization with wild species harboring useful characteristics such as salt, heat, and drought tolerance. Leymus mollis, wild rye was used to improve wheat genetic quality. L. mollis, is a perennial plant harboring tolerance against salt, heat, and drought because L. mollis distributes on the seaside. The F1 hybrids were produced by crossing between common wheat (Triticum aestivum L., Chinese Spring) and L. mollis. Genomic in situ hybridization revealed that the F1 hybrids have L. mollis genome. For the evaluation of salt and drought tolerance, seeds from the F2 were used. Under 2% NaCl solution, the F3 wheat-Leymus addition plants with salt tolerance showed more tillering and longer roots than other F3 plants without salt tolerance. Also, the F3 plants with salt tolerance showed better shallow-rooted than other F3 plants without salt tolerance. Finally, the F3 plants with salt tolerance made seed-setting under 2% NaCl condition, but other F3 plants without salt tolerance were not. Under drought conditions, the F3 plants with drought tolerance showed longer culm and spike length than other F3 plants without drought tolerance and even those of Chinese Spring under well-water conditions. We evaluated and selected the F3 plants with salt or drought tolerance for generation advancement.

  • PDF

Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons (수분스트레스에 의한 케일 내 글루코시놀레이트 변화)

  • Jeong, Na-Rae;Chun, Jin-Hyuk;Park, Eun-Jae;Lim, Ye-Hoon;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.167-175
    • /
    • 2015
  • The present study aimed to investigate the effects of drought stress on the accumulation of glucosinolates (GSLs) in the leaves of Kale cultivated in autumn and spring. HPLC analysis guided to identify seven GSLs including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin. Quantification of GSLs revealed that the contents of sigirin was the highest (45%) followed by the level of progoitrin (24%) in terms of total GSLs. The ranges of total GSL contents was 1.16 (84)-15.88 (89 DAS, ${\mu}mol/g$ dry wt. (DW)) in treatment plot and 1.23 (84)-7.05 (74 DAS, ${\mu}mol/g$ dry wt.) in control plot showed the enhancement in the contents of GSLs in treatment than in the control plot. The present results evidenced that the variation of total GSL contents were depending on the harvest period. In 105 DAS, comparatively no differences in the GSL contents on each sample in autumn season, whereas in spring season, although there was decrease in the GSLs tendency from 74 DAS to 84 DAS in both control and treatment plot, the GSL contents of treatment plot was dramatically increased in 89 DAS. In treatment plot, the GSL contents on 89 DAS (1.16) was 15 fold higher to 84 DAS ($15.88{\mu}mol/g$ DW). The variation in the contents of GSL in spring and autumn did not documented significant differences because of their differences in the growth time and cultivation conditions. In conclusion, the GSL contents in kale was likely to be affected by drought stress treatment. Scrutiny and further research for exact relation between drought stress and GSL contents in kale should be needed.

Applicability of Multi-Temporal MODIS Images for Drought Assessment in South Korea (봄 가뭄 평가를 위한 다중시기 MODIS 영상의 적용성 분석)

  • Park, Jung-Sool;Kim, Kyung-Tak;Lee, Jin-Hee;Lee, Kyu-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.176-192
    • /
    • 2006
  • The need for a systematic drought management has increased since last countrywide drought in 2001. Naturally various studies for establishing drought plan and preventing drought disaster have been conducted. MODIS image provided by Terra satellite has effective spatial and temporal resolutions to observe spatial and temporal characteristics of a region. MODIS data products are easy for preprocessing and correcting geometrically and provide various data set in regular which are applicable for drought monitoring. In this study, Ansung river and the upstream of South Han river basin was chosen for case study to identify and assess spring drought. The multi-period MODIS image and accumulated precipitation were used to detect not only the drought year but also the vegetation change of normal year and the result were compared with various spatial data. The result shows NDVI and LSWI with is more appropriate than LST for assesing spring drought in Korea and two month cumulative precipitation has moderate relationship with drought. It is necessary to use MODIS image which has same period and same space for effective drought analysis because drought is also affected by landover and altitude.

  • PDF

Analysis of the Possibility for Practical Use of MSI/ MidIR/ II Vegetation Indices for Drought Detection of Spring Season (MSI/ MidIR/ II 식생지수를 이용한 봄 가뭄탐지 활용 가능성 분석)

  • Kim, Sung-Jae;Choi, Kyung-Sook;Chang, Eun-Mi;Hong, Seong-Wook
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.37-46
    • /
    • 2011
  • In recent years, utilizations of satellite imagery have been extensively conducted in order to obtain accurate information on drought detection in spring season. This research also carried out utilization of satellite imagery through the various vegetation indices such as NDVI(Normalized Difference Vegeation Index), MSI(Moisture Stress Index), MidIR Index, II(Infrared Index) to find better methodology to detect drought phenomena, especially occurring in spring season. For this purpose, Landsat TM(Thematic Mapper) images were used and applied on the Yeong-cheon city. In this study, the characteristics of DN(Digital Number) for each vegetation index is analyzed, and the correlation analysis between indices and DN according to the number of days with no rain is performed. The results shows high correlation between NDVI and MSI and II with positive correlation on MSI, and negative correlation on II. This indicates the possibility for practical use of MSI, II indices with NDVI to obtain better credibility for detecting spring droughts.