• Title/Summary/Keyword: Spring Operating Mechanism

Search Result 37, Processing Time 0.024 seconds

Development of the Coil Spring Design Program for Spring Operating Mechanism (스프링조작기 개발을 위한 코일 스프링 설계 프로그램 개발)

  • Kim, Min Soo;Jun, Chul Woong;Sohn, Jeong Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.281-285
    • /
    • 2017
  • Since the performance of the spring operating mechanism for a circuit breaker mainly depends on the dynamic behavior and mass of the coil spring, its dynamic analysis is required to evaluate the performance of the spring operating mechanism. In this study, a coil spring design program is developed for the spring operating mechanism. An experimental approach is used to find the variables satisfying the design constraints' requirements. The coil spring is formed by using a lumped mass spring model. This program offers reference data for the design of coil springs and for the spring operating mechanism.

Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring Operating Mechanism for the Circuit Breaker (회로차단기용 스프링조작기의 기구동역학 해석을 위한 스프링모델링 기법 연구)

  • Sohn, Jeong-Hyun;Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.777-783
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. A simple mechanism similar to the spring operating mechanism was designed to generate the release motion of the spring. A high speed camera was used to capture the behavior of the spring. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

Study on the spring modeling of circuit breaker with spring operating mechanism (스프링조작기를 가진 고압회로차단기의 스프링 모델링에 관한 연구)

  • Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.991-996
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. When the spring is used in the circuit breaker, it is installed horizontally. Therefore, Sine excitation tests are carried out horizontal and vertical direction. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

  • PDF

Optimization of the Spring Design Parameters of a Circuit Breaker for Satisfying Specified Dynamic Characteristics (규정된 동적특성을 위한 회로차단기의 스프링 설계변수의 최적화)

  • 안길영;정광영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. If the type and structure of the linkage system required to the circuit breaker is predetermined, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of the mechanism, a systematic procedure for optimizing the spring design parameters is developed and applied to the simplified mechanism of a circuit breaker. Then, in order to consider the complex dynamics of the circuit breaker mechanism rather well, the developed procedure is converted to the environment of a multi-body dynamics program ADAMS.

Optimization of the Spring Design Parameters of a Circuit Breaker to Satisfy the Specified Dynamic Characteristics

  • Gil Young;Kwang Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • A spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of the electric contacts of a vacuum circuit breaker. If the type of a circuit breaker and the structure of the linkage system are predetermined, then design parameters such as stiffness, free length and attachment points of the spring become the important issues. In this paper, based on the energy conservation, the total system energy is constant throughout the operating range of the mechanism; a systematic procedure to optimize the spring design parameters is developed and applied to a simplified mechanism of a circuit breaker. The developed procedure is converted to the environment of the multi-body dynamics program, ADAMS for an in-depth consideration of the complex dynamics of a circuit breaker mechanism.

Design of a Spring-Actuated Linkage for Specified Dynamic Responses (규정된 동적응답을 위한 스프링구동 링크기구의 설계)

  • Ahn, K.Y.;Cho, S.S.;Park, W.J.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.476-481
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of a mechanism, a systematic design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Development of Permanent Magnet Synchronous Motor for High voltage Gas Insulated Switchgear (초고압 Gas Insulated Switchgear 구동용 전동기 개발)

  • Oh, Young-Jin;Jeong, Gyun-Ha;Lee, In-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.919-920
    • /
    • 2007
  • Currently national High Voltage Gas Insulated Switchgear (GIS) operating mechanism is made up of spring operating mechanism or hydraulic operating mechanism. On the contrary, advanced technology trend in foreign countries replace current mechanical mechanism with electrical motor-drive mechanism that leads to participate GIS bid and increase sales with the point of simplification of driving system and IT application. Therefor it is essential to develop high voltage GIS using the motor-drive system to develop national heavy electric machine industries and catch up the technology to the advanced level. This paper therefore presents design and analysis of permanent synchronous motor for high voltage GIS, verifies the performance by the experimental test.

  • PDF

Optimization of the Cam Profile of a Vacuum Circuit Breaker by Using Multibody Dynamics Techniques (다물체동역학기법을 이용한 진공 회로차단기의 캠윤곽 최적설계)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.723-728
    • /
    • 2011
  • Since the performance of a vacuum circuit breaker (VCB) mainly depends on the spring operating mechanism, an analysis of the spring operating mechanism is required in order to improve the design of a VCB. In this study, the static stiffness of the spring was determined by using a material testing machine, and the test results were used to model the spring through computer simulation. The multi-body dynamic model of the spring was established by using the RecurDyn program. The dynamic model was verified by comparing the results of stem displacements and rotating angles of the brake shaft obtained from the simulation and from the experiments. After verification of the dynamic model of VCB, the cam profile of the VCB was optimized through multi-body dynamics simulation in order to improve the performance of the closing mechanism.

Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism (스프링 조작기의 성능 개선을 위한 코일스프링의 최적 설계)

  • Lee, Dae Woo;Sohn, Jeong Hyun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.275-280
    • /
    • 2016
  • In this study, a release test bed is designed to evaluate the dynamic behaviors of a coil spring. From the release tests, the dynamic behaviors of a coil spring are analyzed. A lumped parameter spring model was established for numerical simulation of a spring. The design variables of a coil spring are optimized by using the design of experiments approach. Two-level factorial designs are used for the design optimization, and the primary effects of the design variables are analyzed. Based on the results of the interaction analysis and design sensitivity analysis, the level of the design variables is rearranged. Finally, the mixed-level factorial design is used for the optimum design process. According to the optimum design of the opening spring, the dynamic performance of the spring-operated mechanism increases by 2.90.

A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism (플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.