• Title/Summary/Keyword: Spray structure

Search Result 427, Processing Time 0.028 seconds

CIGS Thin Film Fabrication Using Spray Deposition Technique (스프레이 분무법을 이용한 CIGS 태양전지 박막의 합성)

  • Cho, Jung-Min;Bae, Eun-Jin;Suh, Jeong-Dae;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.250-250
    • /
    • 2010
  • We have prepared CIGS thin film absorber layers with simple solution spray deposition technique and thin film were synthesized with different atomic ratio. CIGS thin films were synthesized using non-vacuum solution deposition method on pre-heated sodalime glass substrates and Mo-coated soadlime glass substrate. In precursor solution were Cu : In : Ga: S ratio 4 : 3 : 2 : 8 and the crystal type of sprayed thin film were CIGS chalcopyrite structures. This structure was identified as typical chalcopyrite tetragonal structure with XRD analysis. This result showed that CIGS solution deposition technique has potential for the one step synthesis and low cost fabrication process for CIS or CIGS thin film absorber layer.

  • PDF

Numerical Study on Impingement Process and Fuel Film Formation of GDI Spray according to Wall Geometry under High Ambient Temperature (고온에서 벽면 형상에 따른 GDI 분무의 충돌 과정 및 연료 액막 형성에 대한 수치적 연구)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.166-174
    • /
    • 2008
  • Numerical study on the impingement process and the fuel film formation of the hollow-cone fuel spray was conducted under vaporization condition, and the effect of the wall cavity angle on spray-wall impingement structure was investigated. A detailed understanding of this phenomena will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions of the Gasoline Direct Injection (GDI) engine. The improved Abramzon model was used to model the spray vaporization process and the Gosman model was adopted for modeling of spray-wall impingement process. The calculated results of the spray-wall impingement process were compared with experimental results. The velocity field of the ambient gas, the Sauter Mean Diameter (SMD) and the generated fuel film on the wall, which are difficult to obtain by the experimental method, were also calculated and discussed. It was found that the radial distance after the wall impingement and the SMD decreased with increasing the cavity angle and the temperature.

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

Effect of NH3 Uniformity Index on SCR System According to Urea Spray Characteristics (요소수 분무특성이 SCR시스템 내 분무균일도에 미치는 영향)

  • Kim, Se Hun;Ko, Jin Seok;Ko, Jae Yu;Cho, Young Jun;Lee, Dong Ryu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.178-184
    • /
    • 2019
  • Diesel engines have the advantages of higher thermal efficiency and lower CO2 emissions than gasoline engines, but have the disadvantages that particulate matter (PM) and nitrogen oxides (NOx) emissions are greater than those of gasoline engines. In particular, nitrogen oxides (NOx) emitted from diesel engines generates secondary ultrafine dust (PM2.5) through photochemical reactions in the atmosphere, which is fatal to humans. In order to reduce nitrogen oxides (NOx), pre-treatment systems such as EGR, post-treatment systems such as LNT and Urea SCR have been actively studied. The Urea SCR consists of an injection device injecting urea agent and a catalytic device for reducing nitrogen oxides (NOx). The nitrogen oxide (NOx) reduction performance varies greatly depending on the urea uniformity in the exhaust pipe. In this study, spray characteristics according to the spray hole structure were confirmed, and the influence of spray uniformity on spray characteristics was studied through engine evaluation.

Analysis of Pilot Spray Characteristics of Different Driven Injectors for High Pressure Diesel Engine (다른 구동방식을 갖는 고압 디젤 엔진용 인젝터의 Pilot 분무 특성 해석)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.251-256
    • /
    • 2003
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors, solenoid-driven and piezo-driven type, with different electric driving characteristics So, three common-rail injectors with different electric current wave were used in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of solenoid-driven injector to know the condition of initial injection at experiment test. It was found that pilot injection of common-rail system was effected by rate of injection and temperature of injected fuel and electrical characteristic of the driven injector.

  • PDF

Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection (고압 분사용 Piezo 인젝터의 Pilot 분무특성)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

The Synthesis of (Y,Gd)$BO_3:Eu^{3+}$Phosphor by Ultrasonic Spray and Their Photoluminance Properties (초음파 분무에 의한 (Y,Gd)$BO_3:Eu^{3+}$ 형광체의 제조와 이의 발광 특성)

  • 김대수;김성우;이임렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.107-110
    • /
    • 1999
  • The ultrasonic spray method was employed to make (Y,Gd)BO$_3$:Eu Phosphor, and its optical properties under 147nm VUV and 254 nm UV excitations were characterized and then compared with that produced by the solid-state reaction. The mixed solution of acetate hydrates of Y, Gd, Eu and boric acid diluted in water or methanol was used as the precursor fur the spray. It was found that (Y,Gd)BO$_3$:Eu phosphor made by this ultrasonic spray had a spherical shape and fine particle size of 1${\mu}{\textrm}{m}$. The crystalline structure for the as-sprayed phosphor was amorphous, but it converted into the same polycrystalline phase of solid state reaction after post heat treatment at 110$0^{\circ}C$ for 2hr. The emitting intensity under VUV and UV excitations for the spray-formed (Y,Gd)BO$_3$:Eu phosphor, however, was inferior to the later one. The excitation spectra were also studied and compared under VUV and UV excitations to explain the change of emitting intensity with Gd substitution in (Y$_{1-x}$ Gd$_{x}$)BO$_3$:Eu Phosphors made by spray and solid state reaction.on.

  • PDF

Silk Fibroin Microsphere and Its Characterization

  • Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo;Kweon, Hae-Yong;Woo, Soon-Ok
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.151-155
    • /
    • 2003
  • Using gel filtration chromatography, high molecular silk fibroin with high purity was obtained and silk flbroin microsphere particles (SFMP) could be simply made by spray dryer method. Also, some of the physicochemical properties of SFMP and morphology were investigated. The average molecular weight of pure silk fibroin protein dissolved in calcium chloride is about 61,500g/㏖ as measured by gel permeation chromatography. SFMP was spherical in shape, and particles, sized average of 2 ${\pm}$ 10 ${\mu}$, were observed by SEM and particle analyzer, respectively. Obtaining microspheres particles by spray dryer method accelerated the transition from the random coil to the $\beta$-sheet structure during spray dryer treatment. It was identified by the basic fourier transform infrared spectroscopy of SFMP. The swelling ratio of SFMP is majorly dependent on the pH of the solution, not on the occurred gelation. The characteristic structure, which might be applicable to immobilization of drugs is superior to other matrix materials for the use of biomaterials with skin affinity.

Effect of Preparation Conditions on the Characteristics of Fe Powders Prepared by Spray Pyrolysis as Heat Source Material (분무열분해공정 하에서 합성 조건이 열원 소재로서의 Fe 분말 특성에 미치는 영향)

  • Koo, Hye-Young;Kim, Jung-Hyun;Hong, Seung-Kwon;Han, Jin-Man;Ko, You-Na;Lee, Su-Min;Ko, Da-Rae;Kang, Yun-Chan;Kang, Seung-Ho;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.581-587
    • /
    • 2009
  • Fe powders with elongated and aggregated structure as heat pellet material for thermal battery applications were prepared by spray pyrolysis under various preparation conditions. The precursor powders with spherical shapes and hollow morphologies turned into Fe powders after reduction at a temperature of 615$^{\circ}C$ under 20% $H_2$/Ar gas. The powders had pure Fe crystal structures irrespective of the preparation conditions of the precursor powders in the spray pyrolysis. The morphologies and mean sizes of the Fe powders are affected by the preparation conditions of the precursor powders in the spray pyrolysis. Therefore, the ignition sensitivities and the burn rates of the heat pellets formed from the Fe powders prepared by spray pyrolysis are affected by the preparations of the precursor powders. The Fe powders prepared under the optimum preparation conditions have a BET surface area of 2.9 $m^2g^1$. The heat pellets prepared from the Fe powders with elongated and aggregated structure have a good ignition sensitivity of 1.1W and a high burn rate of 18 $cms^1$.

Effect of Nickel Nitrate Doping on β-type PVDF Layers Prepared by Electrostatic Spray Deposition (정전 분무법으로 제조한 β-형 PVDF 막에 미치는 니켈 질산염 첨가의 영향)

  • Hwang, Kyu-Seog;Kim, Myung-Yoon;Son, Byeongrae;Hwang-Bo, Seung;No, Hyeonggap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1317-1321
    • /
    • 2018
  • PVDF as a semicrystal polymer, having a structure with C-F dipole moments, has been widely investigated because of its excellent chemical stability, mechanical strength, and ferroelectricity. In this study, ferroelectic ${\beta}$ type - PVDF layer was prepared by using an electrostatic spray deposition method and the effects of the addition of Ni-nitrate in precursor solution on the properties of PVDF layer were evaluated. Crystallinity and chemical structure of the PVDF layer were analyzed by a X-ray diffraction and Fourier Transform Infrared Spectrophotometer. Surface structure and fractured cross section of the layer were examined by a field emission-scanning electron microscope. LCR meter was used to obtain the dielectric properties of the layer. As the addition of an inorganic metal salt in PVDF sol, ${\beta}$ type - PVDF crystals were appeared in the hydrated metal salts doped-layer since the strong hydrogen bondings $(O-H{\cdots}F-C)_n$ due to high polarity of OH- were formed.