• Title/Summary/Keyword: Spray rail

Search Result 125, Processing Time 0.024 seconds

선수 부가물 길이에 따른 Axe Bow선형의 규칙파 중 Spray억제에 관한 수치해석 연구

  • Park, Geun-Hong;Kim, Sang-Won;Jo, Dae-Hwan;Seo, Gwang-Cheol;Lee, Gyeong-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.238-240
    • /
    • 2017
  • 파랑 중 선수파의 영향을 줄이기 위해 도입된 Axe Bow선형은 파랑 중 항해 시 선수부에 과도한 Spray현상이 발생한다. 이를 억제하고자 선수 부가물이 도입되었으나, 수치해석적 연구가 필요할 것으로 판단하였다. 선수 부가물은 Spray rail에서 착안하였으며, 구현이 쉽고 설계 파라미터를 제시 할 수 있는 Barge형상으로 적용하였다. 본 연구에서는 선수 부가물의 길이 변화에 따른 Axe Bow 선형의 Spray 억제를 수치해석적으로 고찰하였다.

  • PDF

Effect of the Change in Injection Pressure on the Mixture Formation Process in Evaporative Free Diesel Spray (분사압력변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.214-219
    • /
    • 2005
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72MPa to 112MPa by using a common rail injection system(ECD-U2). The images of liquid and vapor phase in the evaporating free diesel spray are simultaneously taken by exciplex fluorescence method. As a result, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

  • PDF

Fuel Spray Characteristics of Dimethyl Ether (DME 연료의 분무 특성에 관한 연구)

  • Lee, Sang Hoon;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • This paper describes the atomization characteristics, as well as the velocity and size distribution, of DME spray based on common-rail injection system. To analyze the possibility of using DME fuel as an alternative fuel of diesel, spray atomization characteristics were investigated. For this investigation, two-dimensional phase Doppler analyzer system was used to obtain droplet size and velocity distribution simultaneously. Velocity and droplet size measurements were performed at various injection pressures. Results showed that increasing pressure from 25MPa to 50MPa leads to higher spray droplet velocities and smaller droplet diameter but injection pressure above 40MPa, no signifiant reduction was observed. With the droplet velocity and SMD comparison between diesel and DME fuel, it can be observed that DME has smaller SMD and droplet velocity due to its low surface tension.

  • PDF

An Experimental Study on Hull Resistance Characteristics and Attitude by an Outboard Propulsion System (선외기 추진장치의 저항특성 및 항주자세에 대한 실험 연구)

  • Park, Joo-sik;Won, Jun-hee;Jang, Dong-won
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.301-307
    • /
    • 2017
  • The planing hull is characterized by a large change in the posture according to the speed, and the shape of the propeller varies, so that the hull resistance varies greatly depending on the propeller used. Especially, the Savitsky system, which is widely used for estimating the resistance of planing hull, does not consider the characteristics of these propeller and ship bottom spray rails. In this paper, in order to investigate the difference in resistance characteristics between the propeller and the bottom of the propeller of 6m and 12m class propeller using propeller such as outboard or stern drive, A comparative test was conducted on resistance and attitude posture changes in the Circulating Water Channel of Institute of Medium & Small Shipbuilding. As a result of comparison test, it was confirmed that there is a clear difference in the attitude change due to the presence of the bottom floor spray rail and the change in resistance characteristics due to the installation of the propeller. However, attitude change with the propeller was found to be insignificant.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

Analysis of Transient Diesel Spray with Visualization and Injection Rate Measurement (가시화와 분사율 측정을 통한 비정상 디젤분무의 분석)

  • Kang, Jin-Suk;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.12-18
    • /
    • 2004
  • Transient natures of diesel sprays are often characterized with spray visualization, since it is a non-intrusive and straightforward technique to be applied. However, as injection pressure is increased higher than a thousand bar in a modern direct injection diesel engine, very fine temporal and spatial resolutions in the spray visualization are required while sprays become optically denser. Discussed in this paper are macroscopic and microscopic spray visualization techniques and an example of image processing process for efficient and consistent measurement of spray parameters. The injection rate measurement method based on hydraulic pulse principle was suggested as a way of estimating injection velocity for transient diesel sprays. The spray visualization and injection rate measurement techniques were applied to analyze transient diesel sprays from a common-rail injection system and found to be practically effective.

Study on the Characteristics of Common-rail Diesel Engine with Ultrasoniccally Irradiated Diesel Fuel (초음파 조사 디젤유 적용 커먼레일 디젤기관 특성에 관한 연구)

  • Im, S.Y.;Jeong, Y.C.;Cho, S.C.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2006
  • This is an experimental study on the performance characteristics and combustion characteristics of common-rail type diesel engine by using ultrasonic energy. It is carried out engine performance by engine dynamometer test and combustion characteristics using ultrasonically irradiated diesel fuel in comparison with using conventional diesel fuel. In analyzing the experiments of these results generally, these are obtained as follows. There is an affirmative effect on the side of the improvement of power and the reduction of smoke by applying the ultrasonically irradiated diesel fuel to the common rail engine. But there is less effect on the side of improvement of BSFC.

  • PDF

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

A Study of Behavior Characteristics of Biodiesel Fuel Spray (바이오디젤 연료 분무의 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.