• Title/Summary/Keyword: Spray method

Search Result 1,423, Processing Time 0.032 seconds

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.

High-efficiency repair welding technology for marine engine components (선박엔진 부품의 고능률 보수용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium (이온교환 수지를 함유한 PONF-g-GMA High Loading 음이온교환 섬유의 합성 및 바나듐 흡착 특성)

  • Baek, Ki-Wan;Park, Seung-Wook;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • Aminated PONF-9-GMA ion exchange fabrics were synthesized by radiation induced graft copolymerization. Hybrid ion exchange fabrics combined with aminated PONF-g-GMA fabrics and anionic ion exchange resin were also fabricated by hot melt adhesion method and then their adsorption properties were investigated. Ion exchange capacity of the hybrid ion exchange fabrics was higher than ion exchange fabric and was lower than bead resin. The maximum value was 4.18 meq/g. Adsorption breakthrough time for vanadium of the hybrid ion exchange fabric was 550 min, which was faster than bead resin but slower than fibrous ion exchanger. The Breakthrough time of the hybrid ion exchange fabrics gets longer with increasing pH. The initial breakthrough time occurred around 400 min with increasing vanadium concentration.

Anti-corrosion Property of the CNT/PVDF Composite Coating Films for Preventing the Corrosion of the Ground System (접지시스템의 부식 방지를 위한 CNT/PVDF 복합막의 내부식 특성)

  • Lim, Young Taek;Shin, Paik-Kyun;Choi, Sun-Kyu;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.736-739
    • /
    • 2014
  • In this paper, we propose a enhanced anti-corrosion property of the ground system by coating the CNT/PVDF composite film on it. Polymer material used for preventing the corrosion of ground system is polyvinylidene fluoride (PVDF), and conducting filler for obtaining conductivity of the composite film is multi-walled carbon nanotubes (MWCNTs). The MWCNTs were dispersed in the organic solvent of methyl ethyl ketone 2-butanone (MEK) with different concentration ratios, and the PVDF was solved in the MEK solvent with constant concentration ratio of 1 wt%. The CNT/PVDF composite solution was perpared by mixing and re-dispersing the CNT solution and the PVDF solution. Finally, the CNT/PVDF composite films were fabricated by the spray coating method using the above composite solution. Electrical conductivity, surface states, and anti-corrosion property of the CNT/PVDF composite films coated on the Cu substrate were evaluated. We found that the CNT/PVDF composite film showed relatively low resistance, hydrophobic surface state, and chemical stability. Consequently, we could improve the anti-corrosion property and maintain the electrical conductivity of the ground system by coating the CNT/PVDF composite film on it.

Evaluation of a Fungal Strain, Myrothecium roridum F0252, as a Bioherbicide Agent

  • Lee, Hyang-Burm;Kim, Jin-Cheol;Hong, Kyung-Sik;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.453-460
    • /
    • 2008
  • In the course of in vitro and in vivo screening for bioherbicidal agents, a hyphomycete fungus, Myrothecium sp. F0252 was selected as a candidate for the biocontrol of weeds. The isolate was identified as Myrothecium roridum Tode ex. Fries based on the morphological characteristics and 18S ribosomal DNA sequence analysis and registered as Myrothecium roridum F0252. In order to evaluate the in vitro effect of M. roridum F0252 on germination of ladino clover and white clover (Trifolium repens L.) seeds, spore solution of the fungus was employed in two concentrations, $6.5{\times}10^6$ and $2.5{\times}10^7$ spores per mL and then inoculated to the seeds. The fungal spores inhibited the seed germination, infected the seedlings, and caused an abnormal withering and inhibition of seedling growth. In addition, when the herbicidal activity of crude ethyl acetate extract from the liquid culture was assessed on a mini-plant, duck-weed (Lemna paucicostata (L.) Hegelm.), the extract showed high inhibitory effect at the level of $12.5{\mu}g$ per mL. On the other hand, in vivo herbicidal activity of M. roridum F0252 was evaluated by a whole plant spray method. M. roridum F0252 exhibited strong and broad-spectrum herbicidal activity. The herbicidal values ranged from 95-100% against 7 weeds, including Abutilon avicennae and Xanthium strumarium, and 70-80% against Digitaria sanguinalis and Sagittaria pygmaea. When the nutritional utilization (95 carbon sources) pattern of M. roridum F0252 was investigated, it varied with water activity ($a_w$) and temperature conditions, supplying good, basic information in regard to nutritional utilization for proper cultivation and formulation. Our results showed that M. roridum F0252 might be used as a potential biocontrol agent against weedy plants.

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

Application of Dairy Food Processing Technology Supplemented with Enriched-nutrients for the Elderly: II. The Applicable Technology of Carefoods for the Elderly (고령자를 위한 영양강화 유제품 개발 II. 고령자 영양강화 적용 기술 현황)

  • Kim, Bum Keun;Jang, Hae Won;Choi, Ga Hee;Moon, Yong-Il;Oh, Sejong;Park, Dong June
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-222
    • /
    • 2019
  • Milk and dairy products are the high value foods for the elderly population. In particular, fermented milk is the best source of calcium for people in the specific age group of over 79 years. It provides a good source of protein. Regular exercise and active lifestyle are recommended to slow down the muscle loss. However, exercising without proper nutrient intake is simply not sufficient at this age. Milk and dairy products provide the iron and protein content required for effective exercise-assisted growth. Milk nutrients have the advantage of being produced in various food forms, such as liquid, semi-solid, and powder types. Fat-soluble vitamins such as retinol and vitamin K can be encapsulated using various technologies for milk and dairy products. Using the encapsulation method, spray drying and fluidized-bed coating have been used for adding the micro-nutrients to the food. Microencapsulation technology is being applied in case of the fermented dairy products too. In particular, various wall materials are being developed to enhance the viability of probiotics. In the near future, advanced high-efficiency technologies that can effectively nourish the dairy products with nutrients will be developed to produce targeted high-nutrition value food for the elderly.

Selection of coating materials to leafy perilla seed for reducing endosulfan residue in greenhouse soil (시설재배지 토양중 잔류농약 경감을 위한 잎들깨 종자코팅제 선발)

  • Choi, Ju-Hyeon;Park, Hyeon-Ju;Park, Byung-Jun;Park, Kyung-Hun;Kim, Chan-Sub
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.276-280
    • /
    • 2007
  • In order to select the coating materials to perilla seed for reducing endosulfan residue greenhouse soil, this study was conducted to develop seed coating method and materials and also to evaluate the effects of seed coating on germination and color contrast between soil and perilla seed for convenient sowing work. Talc and kaoline were selected as seed coating materials because easy coating and better color contrast than shell powder or lime. Water was more effective on germination compared to alcohol, com oil and spray sticker as adhesives for seed coating.

The Effect of Solvents on Sold Dispersion of Ipriflavone with Polyvinylpyrrolidone In Vivo

  • Jeong, Je-Kyo;Ahn, Yong-San;Moon, Byung-Kwan;Choi, Myung-Kyu;Khang, Gil-Son;Rhee, John-M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • ABSTRACT -Ipriflavone is a synthetic flavonoid derivate that improves osteoblast cell activity inhibiting bone resorption. In order to improve the bioavailability, solid dispersions of ipriflavone with PVP (poly-N-vinylpyrrolidone, MW=40,000 g/mole) were prepared by a spray-drying method. During the manufacturing of solid dispersion, various solvents [ethanol (EtOH), acetonitrile, methylene chloride and cosolvent-EtOH:acetone=1:1] were used to dissolve the ipriflavone and PVP. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to evaluate the physicochemical interaction between ipriflavone and PVP. Particle size, crystallinity and the area of the endotherm $({\Delta}H)$ of solid dispersed ipriflavone using the acetonitrile as solvent were much smaller than those of the other preparation types. Bioavailability of ipriflavone in vivo was changed by solvents. When considering the result of in vivo test, solid dispersion of ipriflavone using the acetonitrile as solvent showed the best choice.

System Design and Performance Analysis of a Quick Freezer using Supercooling

  • Kim, Jinse;Chun, Ho Hyun;Park, Seokho;Choi, Dongsoo;Choi, Seung Ryul;Oh, Sungsik;Yoo, Seon Mi
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Purpose: This study was conducted for enhancing the performance of a conventional quick freezer by introducing the supercooling state, using a low-temperature coolant. Methods: In the present investigation, the supercooling process was executed prior to quick freezing for reducing the time by which the temperature passes the zone of maximum ice crystal formation. Every food has different nucleation points and hence, we used silicone oil as the coolant for supercooling for easy modification of temperature. Additionally, for quick freezing, we used liquid nitrogen spray. Results: Using the heat exchanger-type precooler with silicone oil, the temperature of the chamber was easily changed for enabling supercooling. Particularly, the results of the freezing test with garlic indicated that this system improved the hardness of garlic after it was thawed, compared to the conventional freezing method. Conclusions: Before quick freezing, if the food item is subjected to the supercooling state, the time from nucleation to the temperature reaching the frozen state ($-5^{\circ}C$, which is the maximum ice crystal formation zone) will be shorter than that incurred using quick freezing alone. The combination of the heat exchanger-type supercooler and liquid nitrogen sprayer is expected to serve as a promising technology for improving the physicochemical qualities of frozen foods.