• Title/Summary/Keyword: Spray impinging

Search Result 151, Processing Time 0.02 seconds

A Study on the Distribution of Cylindrical Disk Spray by a Impinging Disk (충돌판에 의한 원판형 분무의 공간분포에 관한 실험적 연구)

  • 차건종;김덕줄
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.251-262
    • /
    • 1995
  • The goal of this study is to provide fundamental information on the design of a new diesel injector system. The cylindrical disk spray was made by an impinging disk insited below the exit of air-assist atomizor. The disintegration processes on a twin-fluid atomization by air-assist atomizor were investigated. Liquid jet was disintegrated at the condition that wavelength was equal and longer than the circumference of the liquid jet, .lambda. .geq. .pi.do. However, the wavelength and the diameter of the liquid jet were decreased according to the increasing of air velocity. The relative density distribution of droplets and pattern of spray by impinging disk were investigated with a C-CCD. Optimum design conditions for cylindrical disk spray were also achieved. The pattern of cylindrical spray can classified according to the size of the disk and the distance from the nozzle tip to the disk. When the space of the disk and the nozzle tip was narrow and the diameter of the disk was larger than that of the air orifice of the nozzle exit, the good distribution of spray could be achieved. When the air flowrate was constant, the spray width was decreased according to the increasing of the liquid flowrate. When the liquid flowrate was constant, the spray width was decreased according to the increasing of the air flowrate.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Characterization of the internal flow and fuel spray from an impinging flow nozzle (노즐분공내 유체충돌이 있는 디젤노즐의 유동 및 분무특성 연구)

  • Ha, Seong-Eop;Kim, Heung-Yeol;Gu, Ja-Ye;Ryu, Gu-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1635-1646
    • /
    • 1997
  • The nozzle length to diameter ratio of real diesel nozzles is about 2-8 which is not long enough for a fully developed and stabilized flow. The characteristics of the flow such as turbulence at the nozzle exit which affect the development of the spray can be enhanced by impinging the flow inside nozzle. The flow details inside the impinging nozzles have been investigated both experimentally and numerically. The mean velocities, the fluctuating velocities, and discharge coefficients in the impinging inlet nozzles, round inlet nozzle, and sharp inlet nozzle were obtained at various Reynolds number. The developing feature of the external spray were photographed by still camera and the droplet sizes and velocities were also measured by laser Doppler technique. The spray angle was greater and the droplet sizes near the spray axis were smaller with the impinging flow inside nozzle.

A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug (글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구)

  • 문영호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

Analysis of the False Diffusion Effects in Numerical Simulation of Diesel Spray Impinging on Inclined Walls (경사진 벽충돌 디젤 분무에 대한 수치해석에서 오류확산이 미치는 영향)

  • Gwon, H.R.;Lee, S.H.
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • The false diffusion occurs generally when the flow is oblique to the grid lines and when there is a non-zero gradient of the dependent variable in the direction normal to the flow. This numerical problem can overestimate diffusion terms in the continuous phase, causing the numerical inaccuracy for the simulation of impinging sprays on inclined walls because most of spray calculation uses rectangular grid system. Therefore, the main objective of this article is to investigate numerically the influence of false diffusion on numerical simulation for spray-wall impingement on inclined walls. It is found that unlike the spray impingement normal to the wall, the numerical diffusion exists in the case when diesel sprays impinge on the inclined walls with different angles. The results show that the correction function should be considered for accurate prediction of spray penetration length and more elaborate numerical schemes should be utilized to reduce the false diffusion.

  • PDF

A study on the structure of a diesel spray and the Improvement of the Injection System by the Exciplex Method (EXCIPLEX법에 의한 디젤분무의 구조와 분사계 개선에 관한 연구)

  • 김덕줄;차건종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2373-2385
    • /
    • 1995
  • The goals of this study are to apply exciplex method to the visualization of the fuel spray of a diesel engine and to investigate the liquid phase of fuel spray that injected at the various tips of a fuel injector. This study provides the informations for the improvement of the diesel injection system and the structures of diesel spry with the boiling of fuel droplets in combustion chamber by the exciplex method. Hexame was used as fuel for approximation to injection condition of the engine. And naphthalene and TMDP were added to the fuel for the visualization by exciplex method. Experimental injectors were 4hole, 8hole, and 1hole impinging injectors. In the injection condition of actual engine the exciplex was sufficient to catch the liquid phase signal. The spray penetration of impinging injector was small than that of actual 4 and 8hole injector but atomization was better. The upper bound of impinging injector was determined by the geometry of a cylinder head and the lower bound was determined by spray angle. On impinging injector the atomization was better at the edge of disk than at center of disk and also the mixing with environmental gas was better.

Spray characteristics of misaligned impinging injectors

  • Subedi, Bimal;Son, Min;Kim, Woojin;Choi, Jangsu;Koo, Jaye
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1257-1262
    • /
    • 2014
  • The variances of atomization characteristics with the misalignment of injectors defined as the fraction of skewness for various angles of impingement and pressure conditions were studied using the doublet impinging injectors with a like-on-like arrangement. Water was used as simulant and the spray characteristics along with the changes in the skewness were analyzed using the methods of spray image photography. Experiment was carried for the impinging nozzles of orifice diameter of 1.2 mm within Reynolds numbers ranging from $9{\times}10^3-4.5{\times}10^4$ and the fraction of skewness considered for the experiment ranges from 0.0 to 0.9 at ambient temperature condition. Flat sheet with a distinct rim produced perpendicular to the plane of impinging jets goes ondisappear and sheet appears comparatively shorterwith the increase in fraction of skewness resulting the atomization of fluid droplet very close to impingement point with decrease in breakup length and increase in spray angle up to certain extent. The maximum allowable skewness was found as the result. The skewness up to the certain extent can be considered as the parameter to control the atomization characteristics of simulant inside the combustion chamberproviding the high economic performance of fuel and time.

Effects of Ethanol Mixing Ratio on Spray Characteristics of Triplet Impinging Injector (에탄올 혼합비에 따른 3중 충돌형 인젝터의 분무특성)

  • Lee, In-Chul;Kim, Jong-Hyun;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Spray characteristics of a unlike triplet injector were investigated experimentally. Spray images and SMD of droplet were measured to evaluate the spray characteristics injected by liquid/gas combinations. G-L-G(Gas-Liquid-Gas), L-G-L(Liquid-Gas-Liquid) type of injector were used by changing the gas and liquid feed lines. The SMD graph shows that the droplet sizes decrease in the out of radial direction at a fixed gas Reynolds number. The SMD value of decreasing tendency shows that the more ethyl alcohol ratio increase, the more SMD value decrease.

  • PDF

Numerical Study on the Effect of Anisotropic Turbulence Characteristics on the Droplet Behaviors for Impinging Sprays (충돌분무의 액적 거동에 미치는 비등방성 난류특성의 영향에 대한 수치해석 연구)

  • Ko G. H;Ryou H. S
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.6-15
    • /
    • 2003
  • It is an aim of this study to perform extensive numerical study for analyzing the anisotropic turbulence effects on spatial and temporal behaviors of droplet for impinging sprays. The turbulence model of Durbin is used for comparisons with the k-ε model. The turbulence-induced dispersions of droplets are considered to describe the anisotropy of turbulence effectively and spray/wall interactions are simulated using the model of Lee and Ryou. Present study investigates the overall and the internal structures of impinging diesel sprays such as spray shapes, radius and height of wall sprays, Sauter mean diameter (SMD), local droplet velocity, and local gas velocity and compared the results with experimental data by two adopted turbulence models. When the anisotropy effect of turbulence is included, better predictions for both gas and droplet tangential velocities are obtained, compared to the k-ε model. It is concluded that anisotropic effect of turbulence should be considered for simulating impinging diesel sprays.