• Title/Summary/Keyword: Spray column

Search Result 75, Processing Time 0.024 seconds

An experimental study on the atomizing characteristics of liquid column type coaxial sprays (액주형 동축노즐 분무의 무화특성에 관한 실험적 연구)

  • 노병준;강신재;오제하
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.41-53
    • /
    • 1992
  • The main purpose of this study is to investigate the atomizing characteristics of a two phase spray by using a liquid column type coaxial nozzle. The experiments have been carried out to analyze the atomization behavior, the droplet size distributions, and the statistical properties of droplet size distributions. Immersion sampling method and the image processing technique were adapted for the measurements of particles, and the distributions of the droplet sizes were statistically analyzed. In the experiments, the mass ratio defined as Mr= $M_{\sigma}$/ $M_{1}$ has been changed from 1.0 to 3.4 and the measurements have been performed along the axis of the spray. As a result of this experimental study, the distributions of droplet size were satisfied with the Log-Normal distributions and arithmetic mean diameter and deviation of mass ratio. Droplet volume-surface mean diameter was denoted by a exponential function of mass-ratio and the exponent was denoted by linear relation according to the central axis from the nozzle. Dispersions, skewness factors and flatness factors had comparatively constant values regardless of mass ratio and location.

  • PDF

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Purification of Cephalosporin C Produced by Cephalosporium acrernoniurn (Cephalosporium acremonium 변이주가 생성하는 Cephalosporin C의 정제)

  • 이헌주;손영선;안동호;김현수;현형환
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.178-182
    • /
    • 1992
  • For an industrial-scale purification and production of cephalosporin C from a culture broth of Ceplzalos#mium nmemonium CSA-2.8A3 mutant, ultrafiltration, column chromatography, reverse osmosis, and spray drying were empolyed. Above 90% of yield and high purity of cephalosporin C were obtained through WA-30, HP-20, XAD-2000 and SK-1B column chromatographies. Especially, in the tendom operation of the columns, the recovery yield was increased up to 96%. The purified cephalosporin C was stable at $4^{\circ}C$ and in acidic condition, while it was unstable at room temperature and in alkaline condition at pH above 8.0. Cephalosporin C powder or a final product prepared by spray drying contained 85.554 of sodium cephalosporin C, 6.3%' of water, 4.63% of free $Na^+$ ions. and traces of metal ions.

  • PDF

An effect of initial disturbance on the breakup mechanism of liquid jet (초기교란이 액주의 분열기구에 미치는 영향)

  • Seok, J.K.;Park, Y.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 1998
  • The present experimental study investigates the effect of an initial disturbance on the breakup mechanism of a liquid column. With varying the maginitude of the inital disturbance, we measure the surface wave of liquid column with adopting laser shadow method and analyze the growth rate of liquid column and breakup frequency. The experimental results show that thebreakup characteristics of liquid column is significantly influenced by the frequency of the initial disturbance. We concluded that the most uniform droplet occurs when the frequency of initial disturbance coincides with the natural frequency of the liquid column.

  • PDF

Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows (음향가진된 횡단류 유동장 내 액체제트의 분무특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This study investigated the acoustic forcing effects on the liquid column breakup length and the trajectory of liquid jets in crossflows. Cold-flow tests with a single hole circular nozzle injector were carried out by changing the injection pressure and acoustic forcing amplitude. Additionally, spray images were obtained at 12 phase angles to investigate the influence of the phage angle. The results revealed that the liquid column breakup lengths generally decreased under the acoustic forcing conditions, in comparison to those under the non-acoustic forcing conditions. However, they were not affected by the variation in the phase angles. On the contrary, it was found that the acoustic forcing hardly influenced the liquid column trajectories.

The Characteristics of Bubbles in a Column Heat Exchanger for the Application of Direct Contact LNG Evaporator (직접접촉식 LNG기화기 응용을 위한 칼럼 열교환기 기포특성에 관한 연구)

  • Kim, S.J.;Han, S.T.;Kim, J.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.142-151
    • /
    • 1991
  • In the present investigation, it has been proposed to utilize a direct contact heat exchanger as an evaporator to solve the difficulties such as scaling, corrosion and law thermal efficiencies, associated with the conventional evaporator. Liquified nitrozen was utilized as a working fluid to investigate basic natures of bubble dynamics in the evaporator, and spray nozzles were adopted to inject liquified nitrozen into the spray column with varying flow rates of dispersed phase fluids. Experimentations were carried out in the range of $6.54{\times}10^{-4}kg/s$ - 0.030 kg/s for dispersed phase flow rates with one, three and five nozzle holes. Observing the bubble dynamics for the evaporator the feasibility of utilizing a direct contact heat exchanger as a LNG evaporator has been evaluated. The results show that no eruption phenomena was observed in the present investigation with $LN_2$ and the interface between $N_2$ bubbles and water was fully turbulent. It is believed that the high injection velocity of $LN_2$ through the spray nozzles provide good mixing effects for both heat and mass transfers between water and $N_2$ bubbles. Ice was formed on the surface of the spray nozzle for higher $LN_2$ flow rates. However, even in this case, it is observed that the ice was detached as soon as it was formed. Under the present experimental conditions, the shapes of $LN_2$ bubbles were in the spherical-cap region according to the Clift, Grace and Weber Graphs. The height of foam region caused by the breakup of larger bubbles keeps increasing with high injection velocities until it reaches it's maximum height.

  • PDF

A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle (단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • In the micro turbojet engine less than 350kw power class, it is not easy to find out the good atomization fuel injector with good spray quality. However conceptually, rotating fuel injection system can give high atomization quality by only the centrifugal force of a high speed rotating shaft of the engine without high-pressure fuel pump. With this motivation, we manufactured very small rotating fuel injector of 40 mm diameter and performed under a variety of injection orifices. We measured droplet size, velocity and spray distribution by the PDPA(Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. From the test results, we could understand that the length of liquid column from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet size(SMD) is decreased with the rotational speeds and is influenced by the diameter of the injection orifice and liquid film thickness.

  • PDF

An Experimental Study on the Spray Characteristics by Twin-Fluid Atomizer for Wide Band Spray (광폭면 분무를 위한 2유체 노즐의 분무 특성에 관한 연구)

  • Lee, Joong-Soon
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.212-219
    • /
    • 2008
  • To develop the twin-fluid atomizer having the excellent performance of painting, the spray characteristics of how a wide area can be painted efficiently by one time spraying were studied in this paper. Spray phenomena are affected by the many factors determining the spray field such as the spraying pressure of gas, the spraying pressure and viscosity of liquid paints, the opening duration of needle valve, the design dimension of nozzle, and so on. As the results of experiments, these factors affecting on spray characteristics were suggested as followings; 1) The optimum spraying pressure of gas was $0.015{\sim}0.02\;kPa$, and the appropriate spraying pressure of liquid paint was 0.01kPa, In these situations, the setting up pressures must be compensated as much as the losing amount of pressure because a decompression occurred when operating valves. 2) The duration of opening the needle valve must be sustained for $1{\sim}2$ seconds to inject gas after spraying the liquid paint. This operating of the needle valve was necessary to avoid the affect on the changing of liquid column length, and to prevent the droplet deposit at the initial time of spraying. 3) The spray tip penetration was gained form the experimental equation, and the effective spraying angle was $85^{\circ}{\pm}5^{\circ}$ just at he appropriate spraying pressure of gas. The distribution of the area sprayed had the variation in $350{\pm}50\;mm$ because of the spraying pressure of gas, the its distance from the spray tip, and the lift of the needle valve.

  • PDF

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems (발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

Breakup Lengths of Circular and Elliptical Liquid Jets in a Crossflow (횡단류 유동 내 원형 및 타원형 액체제트의 분열길이)

  • Song, Yoonho;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Breakup lengths of circular and elliptical liquid jets in a subsonic crossflow were experimentally studied. Two circular-shaped and four elliptical-shaped plain-orifice injectors, which had different aspect ratios and orifice length to diameter ratios, were used to provide various liquid jet conditions such as steady, cavitation, and hydraulic flip. By varying the injection pressure drop from 1 bar to 6 bar, spray images were taken using a shadowgraph technique. Breakup lengths were measured and analyzed. As the aspect ratio in orifices increased, liquid column breakup lengths normalized by the equivalent diameter were reduced irrespectively of the switching of the major or minor axis to the crossflow. It was also found that when hydraulic flip developed inside the orifice, x-directional breakup lengths more decreased for both circular and elliptical liquid jets.