• Title/Summary/Keyword: Spray angle

Search Result 556, Processing Time 0.022 seconds

Spray Characteristics of a Liquid-Liquid Swirl Coaxial Injector Part II : Effect of Recess Configuration (액체-액체 스월 동축형 인젝터의 분무특성 Part II : 리세스 형상에 따른 영향)

  • Kim, Dong-Jun;Kim, Sung-Hyuk;Han, Poong-Gyoo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.9-17
    • /
    • 2006
  • The influences of recess length of a liquid/liquid swirl coaxial injector on spray characteristics were investigated. It was revealed that the internal impinging phenomenon played an important role in the spray characteristics, such as spray angle and breakup length. Also, as the recess length increased, the mean drop size increased due to the increase of effective film thickness and mixing efficiency increased, but in the case of very deep recess length, the mixing efficiency decreased.

A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector (직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구)

  • Lee, Chang-Hui;Lee, Gi-Hyeong;Bae, Jae-Il;Baek, Seung-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

Development of Gasoline Direct Swirl Injector (직접분사식 가솔린 선회분사기 개발에 관한 연구)

  • Park, Yong-Guk;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.78-86
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. The GDI system includes a high injection pressure, smaller mean diameter, good spray characteristics and stability. We were interested in the development for gasoline direct swirl injector(GDSI) in which the swirler is specially designed with an incident angle. Nymerical analysis was utilized to investigate the internal flow of GDSI with a goal to determine the swirl incident angle and needle lift. Accordingly, it describes characteristics of a GDSI in which the flowrate and spray characteristics are satisfied. especially the spray tip penetration decreases, compared with other type GDI, mean diameter of droplets is from 20${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$ and spray angle ranges from 64$^{\circ}$to 66$^{\circ}$.

Fabrication and Characterization of Taraxacum platycarpum Extract-loaded Particles for Tablet Dosage Form (정제 제형 제조를 위한 포공영 추출물 함유 분말의 제조 및 평가)

  • Jin, Sung Giu
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.225-230
    • /
    • 2019
  • To develop Taraxacum platycarpum extract (TP)-loaded particles for tablet dosage form, various TP-loaded particles composed of TP, dextrin, microcrystalline cellulose (MCC), silicon dioxide, ethanol, and water are prepared using a spray-drying method and fluid-bed-drying method. Their physical properties are evaluated using angle of repose, Hausner ratio, Carr's index, hardness, disintegrant time, and scanning electron microscopy. Optimal TP-loaded particles improve flowability and compressibility. Furthermore, 2% silicon dioxide gives increased flowability and compressibility. The formula of TP-loaded fluid-bed-drying particles at a TP/MCC/silicon-dioxide amount of 5/5/0.2 improves the angle of repose, Hausner ratio, Carr's index, hardness, and disintegrant time as compared with the TP-loaded spray-drying particles. The TP-loaded fluid-bed-drying particles considerably improve flowability and compressibility ($35.10^{\circ}$ vs. $40.3^{\circ}$, 0.97 vs. 1.17, and 18.97% vs. 28.97% for the angle of repose, Hausner ratio, and Carr's index, respectively), hardness (11.34 vs. 4.7 KP), and disintegrant time (7.4 vs. 10.4 min) as compared with the TP-loaded spray-drying particles. Thus, the results suggest that these fluid-bed-drying particles with MCC and silicon dioxide can be used as powerful particles to improve the flowability and compressibility of the TP.

Experimental Study on the Spray Characteristics of Low Pressure Fog Nozzles in Cooling Fog System (쿨링 포그 시스템의 저압 안개 노즐 분무특성에 대한 실험적 연구)

  • Ji Yeop, Kim;Cheol, Jeong;Won Jun, Kang;Jeong Ung, Kim;Jung Goo, Hong
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Cooling fog is being used in various parts of society such as fine dust reduction, cleanliness, and temperature drop. Cooling fog has the advantage of low flow rate and ease of use compared to other spray systems. In the case of cooling fog, it was confirmed that the injection angle increased as the pressure increased and the nozzle diameter increased. In this study, the minimum injection angle was 33.61 degrees and the maximum injection angle was 107.38 degrees. It was confirmed that the larger the nozzle diameter and the smaller the pressure, the larger the droplet size. In addition, it was confirmed that the Sauter Mean Diameter (SMD) increased along the X and Y axis directions. It was confirmed that the size of the droplet decreases as it approaches the nozzle tip due to the characteristics of the nozzle design factor.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

Simulation of Fuel Injection System and Model of Spray Behavior in Liquefied Butane (액상부탄 분사시스템의 수치시뮬레이션 및 분무특성 예측)

  • Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.24-33
    • /
    • 1998
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturation vapor pressure of the butane(0.23MPa at $25^{\circ}C$). An accumulator type pintle injector and its fuel delivery system has been simulated in ruder to give injection pressure, needle lift and rate of fuel injected. The governing equation were solved by finite difference metho. The injection duration was controlled by solenoid valve. Spray behaviors such as a transient spray tip penetration, spray angle and SMD were calculated based on the empirical correlations in case that the back pressure is both above the vapor pressure of the butane and below that of butane. When the back preassure is below the vapor pressure of the fuel, conventional correlation is modified to represent the effect of flash boiling.

  • PDF

Behavior of a Diesel Spray Impinged on a Wall (벽면에 충돌하는 디젤분무의 거동)

  • Cho, I.Y.;Oh, J.H.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • In the case of analyzing the combustion phenomena in a small high speed DI diesel engine, one demands the experimental results of the impinging spray on the wall as a basic characteristics. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air at room temperature was charged. The single spray was impinged on a flat wall. The growth of the spray was photographed with transmitted light or scattered light. The effect of the spray axis angle to the wall on the impinging spray was revealed. Finally, the experimental results was presented, that is, the radius and height of the impinging spray was influenced by above mentioned variable.

  • PDF

A Study on Spray Distribution of Diesel Nozzles (디젤노즐의 분무 거동에 관한 연구)

  • 송규근;오영택;안진근;김강출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.120-127
    • /
    • 1997
  • A diesel engine is one of the major prime movers owing to its high thermal efficiency. But due to the recent attention for the environmental pollution, the emissions of diesel engine became a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. Because the diesel combustion is strongly controlled by a fuel spray injected into a combustion chamber. This study provides the informations for the diesel spray with the atmospere condition in combustion chamber by PMAS. As the result, the spray tip penetration and angle is increased with the increase of spray pressure and nozzle diameter. And the comparisions between the measured outline of the free-spray and the calculated model have been conducted and obtained the resonable results.

  • PDF

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.