• Title/Summary/Keyword: Spray Width Ratio

Search Result 26, Processing Time 0.024 seconds

Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System (분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교)

  • Junkyu Park;Sungwook Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

Spray Pattern Analysis for a Centrifugal Fertilizer Distributor with Two Shutter Holes (두 개의 셔터 구멍이 적용된 원심식 비료 살포기의 살포패턴 분석)

  • Hwang, Seok-Joon;Park, Jeong-Hyeon;Lee, Ju-Yeon;Kim, Ki-Duck;Shin, Beom-Soo;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.8-19
    • /
    • 2019
  • In this study, the spray pattern of a centrifugal fertilizer distributor with two shutter holes was analyzed and an effective driving width that satisfies proper spray uniformity was derived. The centrifugal fertilizer distributor was mounted on a tractor with a rated power of 23.7 kW and static and dynamic spray pattern tests were performed according to the standard procedure proposed by the American Society of Agricultural and Biological Engineers Standard ASAE S341.5. The height of the fertilizer distributor was 80 cm from the ground and the PTO (power take-off) shaft speed of the tractor was fixed at 540 rpm. The fertilizer scattered in space was collected using 275 evenly spaced collectors at shutter opening ratios of 25%, 50%, 75%, and 100%. The spray pattern was analyzed via the amount of sprayed fertilizer at each collector location and the coefficient of variation was used as an indicator of spray uniformity. Using the analyzed spray pattern, the effective driving width that satisfied less than 15% of the coefficient of variation was derived for different tractor driving patterns (race track mode, back and forth mode). From the results, spray uniformity increased as the shutter opening ratio decreased. The largest effective driving width was 8 m at a shutter opening ratio of 25% for both driving patterns.

A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II) (전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II))

  • 장세호;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF

An Experimental Study on Turbulent Characteristics of an Impinging Split-Triplet Injector

  • Kang, Shin-Jae;Ryu, Ki-Wahn;Kwon, Ki-Chul;Song, Bhum-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents turbulent characteristics of an impinging F-O-O-F type injector in which fuel ad oxidizer impinge on each other to atomize under the different momentum ratio. Water was used as an inert simulant liquid instead of fuel and oxidizer. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The gradient of the spray half-width(b$_2$) along the long-axis direction declined throughout the entire spray flow field with increasing the momentum ratio from 1.19 to 6.48. However, the gradient of the half-width(b$_1$) along the short-axis direction decreased with increasing the momentum ratio. The turbulence intensity and turbulent kinetic energy were converged into the center of the center of the initial region with increasing the momentum ratio. As the momentum ratio increased from MR=1.19 to MR=6.48, the turbulent shear stress decreased. The results of this study can be used for the design of an impinging type injector for liquid rackets.

  • PDF

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

External Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무형상 연구)

  • Kim, K.H.;Choi, Y.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, breakup length and bubble behaviors of spray at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase injection pressure, deveopment of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by form a conical sheet like as the simplex swirl atomizer. As trying the analysis of the ratio of bubble length and width it was found that the ratios is comparable. Spray cone angle was nearly $90^{\circ}$.

  • PDF

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song, Jin-Kwan;Ahn, Kyu-Bok;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic cross flows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory and width of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector (와류형 고압인젝터의 초기분무의 분열 과도현상)

  • Choi, Dong-Seok;Kim, Duck-Jool;Ko, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

A study on the effect of injection pressure and ambient pressure for the growth of impinging spray (충돌 분무의 성장에 미치는 분사압과 배압의 영향에 관한 연구)

  • Cha, Geon-Jong;Seo, Gyeong-Il;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1458-1465
    • /
    • 1997
  • This study investigated the effects of pressure on the growth of an impinging spray. We obtained the frozen images which were scattered by Nd ; YAG laser light (pulse width : 7 ns) using synchronization circuit made in the laboratory. For an impinging spray a growth of the penetration length was progressed with increase of the injection pressure but an ambient pressure restrained its growth. The effect of an ambient pressure on penetration was larger than that of an injection pressure. The pressure ratio had an effect on the penetration growth rate. The thickness growth rate depended on both the injection pressure and the ambient pressure compositively. A lower injection pressure or a higher ambient pressure was required for spatial distribution of impinging spray.

Development of Aerial Application System Attachable to Unmanned Helicopter - Basic Spraying Characteristics for Aerial Application System - (무인헬리콥터를 이용한 항공방제시스템 개발(I) - 항공방제시스템 구축을 위한 기초 분무특성 -)

  • Kang, Tae-Gyoung;Lee, Chai-Sik;Choi, Duck-Kyu;Jun, Hyeon-Jong;Koo, Young-Mo;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.215-223
    • /
    • 2010
  • In order to develop an precision aerial pesticide application system to be attached to an unmanned helicopter which can be applied to small lots of land, this study analyzed the flowing and spraying characteristics of the spray droplets by the main rotor downwash by setting the application conditions at the flight altitude of 3 m, the diameter of main rotor of 3.1 m, the boom length of around 2.8 m, and the spraying rate of 8 L/ha. The results of this study are summarized below. Through analysis of the covering area ratio of the spray droplets by main rotor downwash by nozzle type, boom with tilt angle and height, it was found that the covering area ratio of the twin flat-fan nozzle of around 25% was more uniform than other types of nozzle, also boom with $10^{\circ}$ tilt angle and spraying height of 3 m was shown to be the appropriate conditions for aerial application of pesticides. It was found that the nozzle position to minimize the scattering loss of spray droplets due to vortex phenomenon at both ends of the main rotor was around 10 cm from the end of the main rotor. An application test for the aerial pesticide application system attached to the HUA-ACEI unmanned helicopter developed by the Rural Development Administration showed that the range of covering area ratio of the spray droplets was 10-25%, and the spraying width was approximately 7 m when over 10% of covering area ratio was considered for valid spraying.