• Title/Summary/Keyword: Spray Volume

Search Result 334, Processing Time 0.024 seconds

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber (바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구)

  • Suh, Hyun-Uk;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-136
    • /
    • 2015
  • The objective of this study is to investigate the effect of biodiesel blending on spray and combustion characteristics. In order to this, blended fuels containing 0, 5, 20, 50, 100% biodiesel in weight fraction was injected via common rail to constant volume combustion chamber. As a result, spray cone angle decreased and the Sauter mean diameter increased because of the higher dynamic viscosity and density of biodiesel, however, it does not seemed that spray penetration was affected by these factors considerably. In the combustion experiment, ignition delay of biodiesel was shorter than that of diesel due to higher cetane number. And the peak value of heat release rate increased and the end of combustion was advanced owing to higher combustion efficiency cause by the characteristic of oxygenated fuel.

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Numerical Analysis of Ignition and Flame Propagation in the Air/Fuel Spray Mixture (공기/연료분무 혼합기의 점화 및 화염전파 해석)

  • ;;Kim, Sung-Jun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3352-3359
    • /
    • 1995
  • An Eulerian-Lagrangian method is employed to simulate the ignition process and the flame propagation through the air/fuel spray mixture in a closed constant-volume combustor. The spray mixture is ignited by providing a hot wall at the end of the combustor or by firing the electric spark. The investigated parameters involve the initial droplet size, overall equivalence ratio, initial fuel vapor concentration, distance between the hot wall and the nearest droplet, and the ignition energy. Numerical results clearly show the existence of the optimum spray condition for minimizing the ignition energy and the ignition delay time as well as the critical dependence of ignition upon the distance of the heat source to the nearest droplet.

A Study on the Characteristics of Injection and Combustion with Directly Injected Hydrogen Fuel (직접분사식 수소연료의 분무 및 연소특성에 관한 연구)

  • Lee, Seang-Wock;Kee, Wan-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.24-29
    • /
    • 2007
  • This study aims to provide a fundamental data for directly injected hydrogen fuel engines. Spray, ignition and combustion characteristics of hydrogen were studied using constant volume chamber. For spray visualization, hydrogen was vertically injected into a combustion chamber at various condition, for example, injection pressure, ambient pressure. And an argon laser was used for the shadowgraph photography by applying optical method. Also, to investigate heat-release rate and flame propagations, spark was ignited on hydrogen injected at the different time after injection and the duration of injection was also changed. Processes of ignition and combustion were analyzed by heat-release rate calculated by pressure history and were observed by shadowgraph photography The results gave much knowledge of spray, ignition and combustion characteristics of hydrogen.

The Experimental Study on the Interaction of Dual Orifice Type Swirl Injectors (이중선회 분무간의 상호작용에 관한 실험적 연구)

  • Kim, H.J.;Park, B.S.;Kim, H.Y.;Chung, J.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.119-126
    • /
    • 2001
  • The effects of injection pressure and the distance between injectors on the droplet distribution characteristics of liquid spray for dual orifice type swirl injectors were experimentally investigated. The SMD distributions, volume concentration and Rosin- Rammler variation N of liquid spray droplets for water and a fuel were measured by using the laser diffraction particle sizer. The results of present study show that SMD decreases and spray angle increases as the injection pressure increases. The interaction of sprays from two injectors gives more uniform SMD distribution in the radial direction. As the distance between two injectors increases, SMD that is measured in the interacting region increases. The effect of viscosity on the droplet distribution in the interacting region is greater than the that of surface tension of liquid.

  • PDF

Schlieren, Shadowgraph, Mie-scattering Visualization of Diesel and Gasoline Sprays under GDCI Engine Low Load Condition (가솔린 직분식 압축착화 엔진 저부하 영역 디젤/가솔린 분무의 쉴리렌, 쉐도우그래프, 미산란법적 가시화)

  • Park, Stephen Sungsan;Kim, Donghoon;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • In this study, three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures. Fuels were injected into a high pressure/high temperature constant volume chamber under the same ambient pressure and temperature condition of low load in gasoline direct injection compression ignition (GDCI) engine. Two injection pressures (40 and 80 MPa), two ambient pressures (4.2 and 1.7 MPa), and two ambient temperatures (908 and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. It was found that the gasoline fuel is more appropriate to form a lean mixture.