• Title/Summary/Keyword: Spray Transfer

Search Result 209, Processing Time 0.025 seconds

Thermal Transient Response of a PWR Pressurizer Vessel Wall for the Inadvertent Auxiliary Spray Transient (PWR 가압기에서 오동작 보조살수 과도시 용기벽의 열적 과도응답)

  • Jo, Jong-Chull;Lee, Sang-Kyoon;Shin, Won-Ky;Cho, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1991
  • Transient response of temperature distributions in a Pressurized Water Reactor (PWR) pressurizer vessel wall for the Inadvertent Auxiliary Spray transient has been analyzed with conservatism accounted for the resulting thermal stresses in the regions of the vessel wall which are wetted by the spray water droplets. In order to determine the forced convective heat transfer coefficient at the inner boundary surface of vessel wall where the droplets impinge on and flow down, the transient temperatures of spray droplets when they reach the inner surface of the vessel wall after travelling from the spray nozzle through the pressurizer interior space occupied with the saturated steam-noncondensable hydrogen gas mixture have been predicted. The transient temperature distributions in the vessel wall have been obtained by using the finite element method, and the typical results have been provided. It has been shown that the results of thermal analysis are consistent with representation of the input transient and have plausible physical meaning.

  • PDF

Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation (산질화 표면에서의 액적 증발 열전달 성능 분석)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.

Critical heat flux measurement experiment to improve safety of copper nano-particle coated heat exchanger (구리나노입자가 코팅된 열교환기의 안전성 향상을 위한 임계 열유속 측정실험)

  • Mo, Yong-Hyun;Kim, Nam-Jin;Jeon, Yong-Han;Lee, Deok-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.317-322
    • /
    • 2017
  • When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

GMA Torch Configuration for Efficient Use of Argon Gas Part 2 : Comparison between AMAG DMAG Process (아르곤 가스를 효율적으로 사용하기 위한 GMA 용접 토치 구조 Part 2 : AMAG와 DMAG 공정의 비교)

  • 문명철;고성훈;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 1999
  • The auxiliary gas-shielded MAG (AMAG) process, which was devised to provide an argon-rich shielding environment using small amount of argon gas, was investigated experimentally to figure out its effects on metal transfer and weld quality. Proper conditions for the AMAG process including the argon gas ratio, position and direction of the auxiliary nozzle were determined experimentally. Performance of the AMAG process was compared with that of the double gas-shielded MAG(DMAG) and MAG processes by monitoring the bead profile, current and voltage waveforms. The AMAG process was found to provide better bead profile, more stable arc and wider operating range of spray transfer mode compared with the DMAG process. In general, performance of the AMAG process using the argon ratio of 30% was comparable to that of the MAG process using 80% argon and 20% CO₂ gas.

  • PDF

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

Correlation between Welding Parameters and Detaching Drop Size using Regression (회귀 분석을 이용한 용접 변수와 이탈 액적 크기의 상호 관계)

  • 최상균;한창우;이상룡;이영문
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • Metal Transfer in gas metal arc (GMA) welding is a complex phenomenon affected by many parameters of the welding conditions and material properties. In this research, the correlation equation between the welding condition and detaching droplet size and detaching velocity in GMA welding was studied via recession analysis on the results of numerical analysis using the volume-of-fluid (VOF) method. Welding parameters and material properties were grouped into three dimensionless numbers and detaching droplet size was expressed as the function of them. Second order and exponential multi-variable correlation forms were assumed, and the coefficients of these equations were calculated for globular and spray modes as well as entire transfer modes. Applying correlation equation into available experimental data, it shows good agreement.

Cooling Energy Saving System using Solar Heat Protection Dvices (일사차단용 설비를 이용한 냉방 에너지 절약 방안)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.108-115
    • /
    • 2010
  • Global warming and heat island make the outdoor air temperature ascend. Tall office buildings are covered with glass window facades as a design aspect and the portion of window area to facade area is increasing. Hence, cooling load for solar radiation passing through glass window is rising. Cooling air to a certain room is supplied equally despite the face of the room in most office buildings. Especially, the west part of the office cannot maintain the required temperature that occupant needs because of the solar heat coming through windows.?In this study, we projected the water spray system to reduce the solar heat transfer and to reflect the solar ray through windows. We perform the experiments to evaluate the performance of the solar heat protection devices. We measured the room temperature of two separated office rooms for solar heat control devices. The investigation's results show that the water spray system is sufficient to the coated glass and the venetian blinds for the decrease of the solar heat inflow.

Development of single walled-carbon nanotubes based pH sensor using ultra-precision spray method (초정밀 스프레이 방법을 이용한 단일벽 탄소나노튜브 pH센서 개발)

  • Kwon, Jae-Hong;Lee, Kyong-Soo;Lee, Yun-Hi;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Recent studies demonstrated the ability of carbon nanotube (CNT) to promote electron transfer reactions of important compounds and to impart higher stability onto electrochemical sensors. CNT-based sensors measured by hydroxyl radical concentration or pH value suggest great promise for biosensors. This paper describes a new method for fabricating a very simple and inexpensive pH sensor compose of single walled-carbon nanotubes (SW-CNTs) using an ultra-precision spray. CNT-based sensor shows pH sensitivity in buffer solution at different pH range. Our experimental results show the sensor responses to pH buffer solution and the conductance of depends on the pH values. These results support application possibility of SW-CNTs based pH sensor for mass production.

Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor (실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구)

  • 동종인;구우회;임대현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF