• Title/Summary/Keyword: Spray Jet

Search Result 260, Processing Time 0.022 seconds

The Behavior Characteristics of Diesel Impinging Spray on the Room Temperature Impinging Disk (상온 충돌판에서의 디젤 충돌 분무의 거동 특성)

  • Cha, K.J.;Se, G.I.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.24-31
    • /
    • 1996
  • This study addresses the behavior characteristics of diesel spray injected on the impinging disk with the room temperature. The models of impinging spray are the stick, the reflect and the wall jet model In the initiative of the fuel injection the impinging spray was the reflect model. because the momentum of droplets was very large. This model developed to the wall jet model according to the time approaches. On the low temperature disk the fuel film was made by the attachment of the droplets with low Weber number. The thickness of impinging spray was increased when the disk approached to the nozzle tip. Mathematical analysis for calculation with the behavior of impinging spray have to consider the reflecting effect and the influence of the fuel film.

  • PDF

A Study of Computational Fluid Dynamics Analysis for the Water Spray Distance of Long Jet Monitor (Long Jet Monitor의 소화수 분사 거리에 대한 유동 해석적 연구)

  • Jae-Sang Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.907-913
    • /
    • 2023
  • Currently, the sprinkler method is widely used as an initial suppression method in existing firefighting systems. However, this method can cause significant damage to both equipment and facilities in the hydration area. To minimize this damage, fire extinguishing monitors are being developed that can spray fire extinguishing water directly at the point of fire. These monitors are installed on the top floor of the ship, such as the Living Quarter and Ventilation System. While conventional fire extinguishing monitors focus on lightweight research with a short spray port and require a spray distance of about 40 to 45m, recent developments necessitate a longer spray port, similar to a water cannon, requiring a spray distance of about 70 to 75m. This study aims to predict the injection distance of both the existing ship-installed fire extinguisher and the long spray port fire extinguisher through hydrodynamic computer analysis, and to determine whether the injection distance has increased.

Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle (Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

Characteristic of Liquid Jet in Subsonic Cross-flow (횡단가스 유동에 분사되는 액체제트의 분무특성)

  • Ko, Jung-Bin;Lee, Kwan-Hyung;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

MIXING CONDITIONS WITH SPRAY-JET INTERACTION FOR EFFECTIVE SOOT REDUCTION IN DIESEL COMBUSTION

  • Chikahisa, Takemi;Hishinuma, Yukio;Ushida, Hirohisa
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The authors have reported significant reductions in particulate emissions of diesel engines by generating strong turbulence during the combustion process. This study aims to identify optimum conditions of turbulent mixing for effective soot reduction during combustion. The experiments were conducted with a constant volume combustion vessel equipped with abet-generating cell, in which a small amount of fuel is injected during the combustion of the main spray. The jet of burned gas from the cell impinges the main flame, causing changes In the mixing of fuel and air. Observation was made for a variety combinations of distances between spray nozzle and Jet orifice at different directions of impingement. It Is shown that compared with the case without Jet flame soot decreases when the jet impinges. When the jet is very close to the flame, it penetrates the soot cloud and causes little mixing. There were no apparent differences in the combustion duration when the direction of impingement was varied, although the mechanisms of soot reduction seemed different. An analysis of local turbulent flews with PIV (Particle image Velocimetry) showed the relationship between the scale of the turbulence and the size of the soot cloud.

A Study on Spray Characteristics according to Design Parameters and Pressure Conditions of Industrial Y-jet Nozzle (산업용 Y-jet 노즐의 설계변수 및 압력 조건에 따른 분무특성에 관한 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.137-144
    • /
    • 2019
  • The Y-jet nozzle has benefits such as simple design and wide operating conditions. Because of these benefits, it is used in various combustion devices including industrial boilers. The most important variables in the design of the Y-jet nozzle are the mixing chamber length, the supply diameter of the liquid fuel and gas, and the exit orifice diameter. In addition, because of the use of a twin-fluid, optimized data is required depending on the spray condition. In this study, spray experiment was carried out under the pressure condition of 7 bar or more, which is the spraying condition used in industry. There was no change in flow rate with the length of the Y-jet nozzle mixing chamber, but the difference in SMD was confirmed. Adjusting the exit orifice diameter is most important to achieve the desired flow rate. Changes in the liquid and gas inlet port diameters ratio were found to be help improve the operating range and significant difference in SMD was observed.

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement (발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화)

  • Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.