• Title/Summary/Keyword: Spray Jet

Search Result 260, Processing Time 0.026 seconds

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.

Development of New Holography System for Measurments of Particle Velocities Using Separation of Images (이미지 분리를 이용한 입자 속도 측정을 위한 홀로그래피 시스템의 개발)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.16-23
    • /
    • 1997
  • In this research a novel two-reference-beam double pulse holographic technique for the measurments of particle sizes and velocities was developed. This holographic method features the capability of separation of the first and second particle images by using two reference beams instead of one and the change of the polarization direction of laser light. The developed holographic system was tested through the measurements of droplet sizes and velocities in the spray created by two high speed impinging jets. The overall spray pattern clearly revealed the inherent wave nature. Smaller and faster droplets were generated with larger impingement angle, higher jet velocity. and smaller orifice diameter.

  • PDF

Breakup Lengths of Circular and Elliptical Liquid Jets in a Crossflow (횡단류 유동 내 원형 및 타원형 액체제트의 분열길이)

  • Song, Yoonho;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Breakup lengths of circular and elliptical liquid jets in a subsonic crossflow were experimentally studied. Two circular-shaped and four elliptical-shaped plain-orifice injectors, which had different aspect ratios and orifice length to diameter ratios, were used to provide various liquid jet conditions such as steady, cavitation, and hydraulic flip. By varying the injection pressure drop from 1 bar to 6 bar, spray images were taken using a shadowgraph technique. Breakup lengths were measured and analyzed. As the aspect ratio in orifices increased, liquid column breakup lengths normalized by the equivalent diameter were reduced irrespectively of the switching of the major or minor axis to the crossflow. It was also found that when hydraulic flip developed inside the orifice, x-directional breakup lengths more decreased for both circular and elliptical liquid jets.

NiAl Behavior at Plasma Spray Deposition

  • Orban, Radu L.;Lucaci, Mariana;Rosso, Mario;Grande, Marco Actis
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.692-693
    • /
    • 2006
  • Behavior of stoichiometric and near-stoichiometric NiAl at plasma spray deposition, without and with a bond coat, for coating layers realization on a low alloyed steel substrate, has been investigated. In all variants, NiAl particle melting and subsequent welding at the impact with substrate were observed, forming a relatively compact and adherent coating layer with the NiAl stability maintaining - all assuring the coating layer oxidation and corrosion resistance. Good results from these points of view, also validated through corrosion tests, were obtained for 45:55 Ni:Al composition without a bond coat but adopting an Ar protective surrounding of plasma jet.

  • PDF

Spray modelization of air-assisted coaxial atomizer (이류체 분사노즐의 분무예측 모델)

  • Yun, Seok-Ju;Ledoux, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1948-1958
    • /
    • 1996
  • Experimental and theoretical studies on the air-assist coaxial atomizer have been continuously carried out for a long time. But now the importance of the theoretical study is tending to increase as with the development of computer. This study is concerned to the spray modelization, especially, the instability of the liquid jet surrounded by the air stream which flows with high velocity. To study the phenomena of the break up, we used the linear theory based on the classical Kelvin-Helmholtz theory for capillary wave at a simple interface and we investigated the variation of liquid core radius. As a result, we obtained that the drop diameter and the variation of the liquid core radius predicted by using our model are reasonable.

Combustion Characteristics of the Atomized Hydrocarbon Liquid-fuel Spray Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 탄화수소계 액체연료 분무의 연소특성)

  • Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • An experimental study was performed to investigate the combustion characteristics of the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configuration of the flame was caught by the DSLR camera, and images were analyzed in detail through a post-processing. Temperature of the flame zone was measured using thermocouple. It is resulted that the flame area is proportional to the mass flow rate of carrier gas as well as the voltage applied to the ultrasonic oscillator. Temperature of the flame zone is measured and analyzed according to variation in the operating condition of the burner, too.

An Experimental Study on Slamming Phenomenon by Forced Impact (강제 입수에 의한 슬래밍 현상에 관한 실험적 연구)

  • Nahm, J.O.;Kang, H.D.;Chung, J.Y.;Kwon, S.H.;Choi, H.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.392-395
    • /
    • 2006
  • This paper presents the experimental results at slamming phenomenon. The air pressure cylinder was used to ensure repeatability of the impact. The results showed that the adopted experimental technique was very excellent in terms of repeatability when is compared to that of the free drop tests. The pressure time histories, magnitude of peak pressure and the behavior of jet spray were obtained. The flat specimen was tested for various incident angles. To estimate the incident speed of the specimen high speed camera was used. The high speed camera was also useful tool in understanding the behavior.

  • PDF

An Experimental Study on Electrohydrodynamic Atomization of Non-Conducting Liquid (비전도성 액체의 전기수력학적 분무에 관한 실험적 연구)

  • Lee, Ki-Joon;Park, Jong-Seung;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1322-1327
    • /
    • 2004
  • In the present work, a series of experiments have been performed on electro-hydrodynamic atomization of non-conducting liquid using a charge injection type nozzle. Effects of liquid flow rate, input voltage, and distance between the needle and the ground electrode (nozzle-embedded metal plate) have been examined. For fixed electrode distances, total and spray currents increase with increase of liquid flow rate and input voltage. When the distance between the needle and the ground electrode becomes closer, total, leakage and spray current increase, but the onset voltage for dielectric breakdown decreases. When the electric field strength of the liquid jet exceeds that for the air breakdown, a portion of the electric charges in the liquid jet is dissipated into the ambient air, and the charge density shows a limiting value. Atomization quality can be improved by increasing the flow rate because the higher charge density is achieved with the larger liquid velocity in addition to the enhanced aerodynamic effect.

  • PDF

An Experimental Study on Charge Injection to Non-Conducting Liquid for Electrohydrodynamic Atomization (비전도성 액체의 전기수력학적 미립화를 위한 전하 주입 특성에 관한 실험적 연구)

  • Lee, Ki-Joon;Park, Jong-Seung;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1376-1383
    • /
    • 2004
  • In the present work, a series of experiments have been performed on electro-hydrodynamic atomization of non-conducting liquid using a charge injection type nozzle. Effects of liquid flow rate, input voltage, and distance between the needle and the ground electrode (nozzle-embedded metal plate) have been examined. For fixed electrode distances, total and spray currents increase with the increase of liquid flow rate and input voltage. When the distance between the needle tip and the ground electrode becomes closer, the total, leakage and spray currents increase, while the onset voltage for the dielectric breakdown decreases. When the electric field strength of the liquid jet exceeds that for the air breakdown, a portion of the electric charges in the liquid jet is dissipated into the ambient air, and the charge density shows a limiting value. Atomization quality can be improved by increasing the liquid flow rate due to the higher charge density and the enhanced aerodynamic effect.

Effects of Ultrasonic Standing Wave on the Ultrasonically-atomized Aerosol Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통과한 초음파 무화 에어로졸 화염에 정상초음파가 미치는 영향)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • In liquid-fuel spray combustion, an experimental study was conducted to observe the effect of ultrasonic excitation on the ultrasonically-atomized liquid fuel flame by controlling pressure field through an ultrasonic standing wave. Flame of the ultrasonically-atomized kerosene aerosol was visualized by using a high speed camera, DSLR, and Schlieren photography. The amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion, through which the ratio of carrier gas (air) to fuel mass was able to be obtained, too. As a result, it could be found that the combustion reaction-rate of the liquid-fuel aerosol was increased by applying an ultrasonic standing wave to the secondary flame zone of the flame.