• 제목/요약/키워드: Spray Cooling

검색결과 188건 처리시간 0.033초

Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화 (Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature)

  • 오창혁;김영신;전의식
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구 (The Experimental Study on Mist Cooling Heat Transfer)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

표면거칠기 효과에 따른 스프레이 냉각의 열전달 향상 연구 (Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect)

  • 이정호
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.203-212
    • /
    • 2010
  • 수분류 스프레이 냉각은 많은 산업적인 응용분야에 넓게 사용되고 있다. 본 연구는 수분류 스프레이가 표면거칠기가 주어진 $900^{\circ}C$ 고온강판의 표면에 충돌하는 경우, 열유속 및 열전달계수의 정량적인 측정을 통해 표면거칠기가 수분류 스프레이 냉각에 미치는 영향을 고찰하였다. 이 때의 국소 열유속은 시편, 카트리지히터, 열전대의 조합으로 고안된 고유의 열유속게이지를 제작하여 엄밀하게 측정되었다. 평균 표면거칠기 높이를 기준으로 40, 60, $80{\mu}M$의 3 가지 표면과 매끈한 표면에 대한 수분류 스프레이 냉각 의 열전달 현상이 비교 및 평가되었다. 표면거칠기가 주어진 표면에서의 돌출물은 얇은 열 경계층두께를 통과할 수 있기 때문에 표면거칠기가 주어진 경우에 열전달은 뚜렷하게 증가하였고, 표면거칠기의 의한 열전달 향상 기구는 서로 다른 비등영역에 대해 구분하여 조사되었다.

스테인리스 쿨링포그의 온도저감효과 검증을 위한 모델설계 및 실증 실험 (Model Design and Demonstration Test for the Verification of Temperature Reduction Effect of Cooling Fog System with Stainless Steel)

  • 김재경;강준석;김회진
    • 한국환경과학회지
    • /
    • 제29권6호
    • /
    • pp.683-689
    • /
    • 2020
  • According to a NASA Goddard Institute for Space Studies report, temperatures have risen by approximately 1℃ so far, based on temperatures recorded in 1880. The 2003 heatwave in Europe affected approximately 35,000 people across Europe. In this study, a cooling fog, which is used in smart cities, was designed to efficiently reduce the temperature during a heatwave and its pilot test results were interpreted. A model experiment of the cooling fog was conducted using a chamber, in which nano mist spray instruments and spray nozzles were installed. The designed cooling fog chamber model showed a temperature reduction of up to 13.8℃ for artificial pavement and up to 8.0℃ for green surfaces. However, this model was limited by constant wind speed in the experiment. Moreover, if the cooling fog is used when the wind speed is more than 3m/s in the active green zone, the temperature reduction felt by humans is expected to be even greater. As a second study, the effect of cooling fog on temperature reduction was analyzed by installing a pilot test inside the Land Housing Institute (LHI). The data gathered in this research can be useful for the study of heat reduction techniques in urban areas.

압축냉각공기와 오일미스트를 이용한 환경친화 연삭가공기술 (Ecological Grinding Technology Using Compressed Cold Air and Oil Mist)

  • 이석우;최헌종;허남환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.24-27
    • /
    • 2002
  • The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the finding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below $-25^{\circ}$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air, oil mist spray pressure and oil mist supply direction were done.

  • PDF

2유체 미세 물분무 소화노즐의 분무유동 특성 (Spray Flow Characteristics of Twin-fluid Water Mist Nozzle for Fire Suppression)

  • 김봉환;최효성;김동건
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.60-66
    • /
    • 2011
  • In the present investigation, experimental studies were conducted on the fire suppression performance of twin-fluid water mist spray which is subjected to thermal radiation in a closed space. Downward-directed water-mist sprays, interacting with an under kerosene pool fire, were investigated in a test facility. The mass mean diameter of water-mist droplets were measured by PMAS under various flow conditions. The developed twin-fluid water mit spray nozzle satisfied the criteria of NFPA 750, Class 1. The mechanism of fire suppression by fine water mist was concluded to be the cooling of the fire surface which leads to the suppression of fuel evaporation. It was proved that the automatic twin-fluid water mist spray system under lower pressures could be applied to an industrial facilities.

물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향 (Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire)

  • 김성찬;유홍선;박현태;방기영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향 (Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire)

  • 김성찬;유홍선;박현태;방기영
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.28-33
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$. Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $^120{\circ}$, and $180^{\circ}$). The global mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhanced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

The Investigation of the Plasma Sprayed Coatings for the Application of OG Cooling Tube in Steel Making Plant

  • Kim, HyungJun;Kwon, YoungGak
    • Corrosion Science and Technology
    • /
    • 제4권1호
    • /
    • pp.23-28
    • /
    • 2005
  • Several plasma-sprayed ceramic coatings with two- and three-layers were characterized and tested for the application of cooling tube coatings of oxygen convert gas recovery system (OG cooling system) in the steel making plant. Thermal cycling tests using a torch heating with compressed air cooling were carried out and characterized before and after the tests. The effects of metallic bond coat as well as ceramic top coat were also studied. Possible failure mechanisms with low carbon steel substrate were assessed in term of microstructure, porosity, bond strength, thermal expansion coefficient, and the phase transformation. Finally, the results of field tests at the OG cooling system are presented and discussed their microstructural degradation. Test results have shown that three-layered coatings perform better than two-layered coatings.

모형 가스터빈 연소기에서의 분무 및 연소 특성 (Spray and Combustion Characteristics in Model Gas Turbine Combustor)

  • 황진석;구자예;성홍계;강정식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.381-386
    • /
    • 2007
  • 액체 연료를 사용하는 가스터빈 연소기에서의 분무 및 연소 특성을 알아보기 위해 본 연구에서는 KIVA-3V를 이용하여 애뉼러형 모형 가스터빈 연소기에서 Jet-A의 분무와 연소에 의한 열유동 현상을 수치해석을 통하여 연구하였다. 홀을 통해 유입되는 냉각유동이 있을 경우, 유입 유동이 최적화되지 않으면 액체연료의 분무는 주위 유동장의 영향을 크게 받아 후류에서 SMD가 증가하고, 등가비의 수직적 분포가 일어나기 어렵게 된다. 화염이 연소실의 중앙 부분에서 좌우로 넓게 발생하며, 유동에 의해 화염의 후류가 갈라지는 현상이 있었으며 이로 인해 화염중심부가 분리되고 국소적인 고온부가 생성되어 NO의 발생이 증가하는 영역이 발생하였다.

  • PDF