• 제목/요약/키워드: Spray Combustion

Search Result 639, Processing Time 0.022 seconds

Study on Spray Vaporization and Combustion in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.193-207
    • /
    • 2002
  • The present study is mainly motivated to investigate the vaporization, autoignition, and combustion of liquid fuel spray injected into high pressure environment. In order to represent these phenomena realistically, discrete droplet model (DDM) which simulates the spray using finite number of representative droplets was adopted for detailed consideration of the finite rate of uansport between liquid and gas phases. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. The high pressure vaporization model was applied using the thermodynamic and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. The characteristics of spray in high pressure environment were explained by comparison with normal pressure case.

  • PDF

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF

Numerical Analysis for Spray Combustion Considering Droplet Heating (액적 가열을 고려한 분무 연소의 수치 해석)

  • Sung Hyunggun;Jeong Daekwon;Lee Sangmyeong;Roh Taeseong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.208-211
    • /
    • 2005
  • In order to provide a useful data of combustion chamber design, a numerical analysis for spray combustion of fuel and oxidizer in combustion chamber has been conducted. As a spray model, the DSF model and the Euler-Lagrange scheme have been used. The change of droplet temperature has been calculated considering droplet heating. The coupling effects between and the gas phase the droplets, and between the gas phase and the evaporated vapor have been calculated using the PSIC model.

  • PDF

Parametric Study of DME Spray Combustion Characteristics in the Diesel-like Condition (디젤엔진조건에서 DME분무의 연소특성 해석)

  • Bae, Jun-Kyeung;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.163-170
    • /
    • 2009
  • The present study has numerically investigates the vaporization, auto-ignition and combustion processes in the high-pressure and high-temperature conditions encountered in the diesel engine. In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes compared to conventional hydrocarbon liquid fuels, the sequence of the comparative analysis has been systematically made for DME and n-Heptane liquid fuels. Computations for DME fuel are made for two cases including constant fuel mass flow rate condition and fixed heat release rate. Based on numerical results, the discussions are made for the detailed combustion processes of DME and n-Heptane spray.

  • PDF

The evaluation of error due to flame in the measurement using phase doppler anemometry (위상도플러 유속계를 이용한 계측에 있어서의 화염에 기인한 오차의 평가)

  • Yang, Young-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.313-321
    • /
    • 2005
  • Spray combustion has been used in many industrial fields, for instance, such as diesel engines, gas turbines and industrial furnaces, and furthermore various measurement techniques have been applied to elucidate the phenomenon of spray combustion. In order to measure simultaneously the droplet velocity and the droplet size of spray, phase doppler anemometry (PDA) was frequently used in spray combustion. However, the measurement error is occurred due to existence of flame, which is considered as influencing the precision of measurement. Therefore, the purpose of this study is experimentally to conduct the systematic evaluation on the measurement error when PDA measurement is applied to combustion field.

A Study on Flash Spray and Combustion Characteristics of Orimulsion (오리멀전의 플래쉬 분무 및 연소특성에 관한 연구)

  • Shin, Myung-Chul;Ryu, Tae-U;Kim, Se-Won;Bang, Byung-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.18-23
    • /
    • 2005
  • This study focused on the use of orimulsion in industrial combustion systems. Orimulsion is a bitumen-in-water emulsified fuel, which contains a thirty percent water. Orimulsion has relatively high levels of sulfur and nitrogen compared to many fuel oils, and has been the subject of much debate regarding the environmental impacts of its use. The goal of this research is to analyze the effect of flash spray combustion characteristics of orimulsion on NOx and particulate material reduction. For the flash spray of orimulsion, it is heated to $150^{\circ}C$. The effects of fuel heating temperatures on NOx and particulate material emissions were investigated experimentally. As the fuel temperature was increased, NOx and particulate material concentrations in flue gas were decreased.

  • PDF

A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis (분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구)

  • Park, Jeonghyun;Cho, Hanbin;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Behavior of 2-Stage Injection on Diesel Spray (2단분사 디젤분무의 거동)

  • Park, B.D.;Kwon, S.I.;Oh, J.G.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.33-39
    • /
    • 2000
  • The behavior of the 2-stage spray was studied by using the schlieren method with the high pressure common-rail injection system. The spray injected 2 times with the interval of $0.3ms{\sim}1.5ms$ between the 1st and the 2nd spray in a modeled combustion chamber of constant volume bomb. In this case, the quantity of injected fuel of 1st and 2nd also changed. The schlieren photograph shows that the 2nd spray goes further away than the 1st spray when the quantity of the 1st spray is less than that of the 2nd spray. The dispersion of the vapour to the combustion chamber is not affect in a 10% of 1st spray quantity. When the 1st spray quantity is more than the 2nd spray, the vapour scattering of spray is good.

  • PDF

Combustion Modeling of Vacuum Residue Fuel Sprays (잔사유 분무 연소 해석에 관한 연구)

  • Choi, Chan-Ho;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.207-214
    • /
    • 2004
  • Extra heavy vacuum residue oil has advantage as the fuel of a power plant in reducing the cost of power generation. Numerical study is conducted by the KIVA code to understand combustion, heat transfer and flow field characteristics in the test reactor. The combustion model of pulverized coal particles is adopted as the combustion process of extra heavy oil is similar to that of coal. As an initial phase of investigation parametric study is performed with respect to SMD and spray angle of injected spray droplets.

  • PDF

MIXING CONDITIONS WITH SPRAY-JET INTERACTION FOR EFFECTIVE SOOT REDUCTION IN DIESEL COMBUSTION

  • Chikahisa, Takemi;Hishinuma, Yukio;Ushida, Hirohisa
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The authors have reported significant reductions in particulate emissions of diesel engines by generating strong turbulence during the combustion process. This study aims to identify optimum conditions of turbulent mixing for effective soot reduction during combustion. The experiments were conducted with a constant volume combustion vessel equipped with abet-generating cell, in which a small amount of fuel is injected during the combustion of the main spray. The jet of burned gas from the cell impinges the main flame, causing changes In the mixing of fuel and air. Observation was made for a variety combinations of distances between spray nozzle and Jet orifice at different directions of impingement. It Is shown that compared with the case without Jet flame soot decreases when the jet impinges. When the jet is very close to the flame, it penetrates the soot cloud and causes little mixing. There were no apparent differences in the combustion duration when the direction of impingement was varied, although the mechanisms of soot reduction seemed different. An analysis of local turbulent flews with PIV (Particle image Velocimetry) showed the relationship between the scale of the turbulence and the size of the soot cloud.