• Title/Summary/Keyword: Spray Characteristics

Search Result 1,868, Processing Time 0.033 seconds

Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection (VCO노즐에서 고압으로 분사되는 디젤분무의 특성)

  • 강진석;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber (정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구)

  • Yang, Jiwoong;Lee, Sejun;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.

Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine (가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성)

  • Lee, C.S.;Lee, K.H.;Choi, S.C.;Kwon, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

MACROSCOPIC STRUCTURE AND ATOMIZATION CHARACTERISTICS OF HIGH-SPEED DIESEL SPRAY

  • Park, S.-W.;Lee, C.-S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.157-164
    • /
    • 2003
  • An experimental and numerical study was performed to investigate the macroscopic and microscopic atomization characteristics of high-speed diesel spray issued from the common-rail injection system. For the experiments, spray visualization system and a phase Doppler particle analyzer system were utilized to obtain the spray atomization characteristics such as the process of spray development, spray tip penetration, and SMD distribution. In order to analyze the process of spray atomization with KIVA-3 code, the TAB breakup model is changed to the KH-DDB competition model, which assumes the competition between the wave instability and droplet deformation causes the droplet breakup above the breakup length. The calculated results were also compared with the experiments in terms of spray tip penetration and SMD distribution. The results provide the process of spray development, axial and radial distribution of SMD, and calculated overall SMD as a function of time after start of injection.

Spray Characteristics of the Rotating Fuel Injection System (회전연료 분사시스템의 분무특성)

  • Lee, D.H.;Park, J.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • The spray characteristics of the rotating fuel injection system were investigated. The special test rig was devised to get the spatial and momentary droplet information. This experimental apparatus consists of a high-speed motor, a shaft, a rotating fuel nozzle and an acrylic case. Spray droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and instantaneous velocity field was measured by 1'IV (Particle Image Velocimetry) system. At the same time, spray visualization was performed by using ND-YAG laser-based flash photography. From these two different laser diagnostic techniques, we could get spatial and instantaneous spray information fur rotating fuel injection system. The results presented in this paper indicate that spray characteristics such as droplet size, velocity and spray pattern were strongly influenced by rotational speed.

  • PDF

Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine (직분식 가솔린 기관 고압 인젝터의 연료 무화 특성)

  • 이창식;최수천;김민규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF

A Study on Microscopic Spray Characteristics of Free Spray of Diesel with Ultra High Pressure (극초고압 디젤 자유분무의 미시적 분무특성에 관한 연구)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.7-12
    • /
    • 2005
  • In order to analyze the microscopic spray characteristics of free spray in ultra high pressure region, the droplets size and velocity of free spray injected under atmosphere condition were measured by PDPA. As injection pressure became ultra high pressure, the droplets size was decreased continuously due to the increase of mutual reaction between droplets and air. But the decreasing rate became moderate. The velocity was increased until 250 MPa, and then decreased over that of injection pressure. It was seemed that the droplet size was similar in range of $280\~350\;MPa$, but increased in 414 MPa, even though injection pressure was increased. The microscopic spray characteristics of free spray got worse in 414 MPa.

A Study on Improvement of Etching Characteristics by Spray Characteristics Analysis with Nozzle Geometries in Wet Etching Process (습식 에칭공정에서 노즐 형상에 따른 분무특성 분석을 통한 에칭특성의 향상에 관한 연구)

  • Jung, Ji-Won;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.842-849
    • /
    • 2004
  • The objective of this work is to study the improvement of etching characteristics in wet etching process. The etching characteristics such as etching factor were investigated under different etching conditions and compared with the spray characteristics. The spray characteristics of nozzle with different geometries such as swirler angle and swirl chamber aspect ratio were analyzed by using PDA system to predict the effect of the spray characteristics on the etching factor. The swirler angles were 49,5$^{\circ}$, 63$^{\circ}$ and 76.5$^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6 and 2.0. It was found that the etching factor was correlated with the spray characteristics and also the smaller swiller angle, the larger etching factor became.

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.