• 제목/요약/키워드: Spray

검색결과 5,319건 처리시간 0.038초

분열모델 상수가 분무 및 연소특성에 미치는 영향 (Effects of Spray Breakup Model Variables on Spray and Combustion Characteristics)

  • 이승필;박준규;박성욱
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.29-35
    • /
    • 2017
  • This paper describes the effects of spray breakup model constants on spray and combustion characteristics in single cylinder compression engine. KIVA-3V code coupled with a CHEMKIN chemistry solver was used for numerical analysis. In this study, spray simulations and combustion simulations are studied simultaneously. Spray simulation was conducted in constant volume to reduce the effects of air-flow as swirl or tumble. The model validation was conducted and there are little difference between experiments and simulation, this differences were reasonable. In spray simulation, the effects of model constants on spray tip penetration, spray patter and SMD were studied. Furthermore, the analysis of effects of breakup variables on combustion and emissions characteristics was conducted. The results show the KH-RT breakup model constants affects spray and combustion characteristics strongly. Increasing KH model variable (B1) and RT model constants ($C_{\tau}$, $C_{RT}$) induced slower breakup time.

초고압 경유-물 혼합연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Diesel-Water Emulsion with Ultra High Pressure)

  • 정대용;이종태
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2003
  • Spray characteristics on diesel- water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure. Spray Patterns were visualized under various water content and injection pressures. Spray tip penetration was increased and spray angle decreased in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure.

  • PDF

간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

다공형 GDI 인젝터의 분무특성에 대한 실험적 연구 (An Experimental Study on Spray Characteristics of Multi-Hole GDI Injector)

  • 이성원;박성영
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.201-209
    • /
    • 2011
  • Optimum engine performance is obtained when the spray characteristics is well matched to the geometry of a combustion chamber. Among many parameters governing the combustion performance in internal combustion engine, fuel supply characteristics and atomization are important performance factors. Therefore, spray characteristics of high pressure multi-hole injector has been studied experimentally. An experimental test system has been made to operate high pressure injection system and to visualize spray behavior. Spray visualization has been performed to analyze spray formation, spray cone angle, bent angle and penetration length. Spray interaction with piston has been analyzed with various injector installation angle, injection pressure and ambient pressure. Test results show that penetration length is greatly influenced by the injection pressure. Penetration length is decreased as ambient pressure increased. Spray cone angle is increased as injection pressure and ambient pressure increased. However, bent angle is not influenced by the change of injection pressure and ambient pressure. Spray cone angle distribution map is plotted using the experimental data. Fuel movement around the spark-plug has been enforced as increasing injector installation angle.

폐식용유 바이오디젤 연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil)

  • 안상연;김웅일;이창식
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

VCO노즐에서 고압으로 분사되는 디젤분무의 특성 (Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection)

  • 강진석;배충식
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

바이오 디젤 연료의 고압 분무 특성 (Characteristics of High Pressure Bio-diesel Fuel Spray)

  • 홍창호;최욱;최병철;이기영
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

Dimethyl-ether (DME) 연료의 분무, 연소 및 배기 특성에 관한 실험 및 수치해석적 연구 (A Study on the Spray, Combustion, and Exhaust Emission Characteristics of Dimethyl-ether (DME) by Experiment and Numerical Analysis)

  • 박수한;김형준;이창식
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.31-37
    • /
    • 2010
  • The aim of this work is to investigate the spray and combustion characteristics of dimethyl-ether (DME) at various injection conditions. The spray characteristics such as spray tip penetration and spray cone angle were experimentally studied from the spray images which obtained from the spray visualization system. Combustion and emissions characteristics were numerically investigated by using KIVA-3V code coupled with Chemkin chemistry solver. From these results, it revealed that DME spray had a shorter spray tip penetration and wider spray cone angle than that of diesel spray due to the low density, low surface tension, and fast evaporation characteristics. At the constant heating value condition, DME fuel showed higher peak combustion pressure and earlier ignition timing, because of high cetane number and superior evaporation characteristics. In addition, the combustion of DME exhausted more $NO_x$ emission and lower HC emission due to the active combustion reaction in the combustion chamber. The result shows that DME had a little soot emission due to its molecular structure characteristics with no direct connection between carbons.

디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구 (Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels)

  • 박세원;박수한;박성욱;전문수;이창식
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.