• 제목/요약/키워드: Spot welds

검색결과 84건 처리시간 0.092초

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Slobodyan, Mikhail
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1049-1078
    • /
    • 2021
  • The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구 (A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account)

  • 백승엽;윤기호
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1137-1143
    • /
    • 2010
  • 가스용접 구조물의 장 수명 피로설계기준(fatigue design criterion)을 결정하기 위해서는 정확한 응력해석과 체계적인 피로강도평가가 필요하다. 그러나 실 구조물로부터 피로설계기준을 결정하는 것은 대단히 어려우므로 구조물의 기계적 구조적 특성을 만족하는 간편 시편을 만들어서 $\Delta{\sigma}-N_f$ 관계를 도출하여 피로강도를 평가하고 있다. 그리고 가스용접에 의해 제작된 실 구조물의 피로설계를 위해서는 피로균열발생과 파단 기점이 되는 용접부의 용접잔류응력(welding residual stress)이 고려되어야 한다. 따라서, 본 연구에서는 플러그 및 링 가스용접 이음재에 대한 용접잔류응력을 고려하기 위해 용접 열 사이클(heat cycle)에 의한 비선형 열해석(non-linear thermal analysis)과 열 응력(thermal stress) 해석을 수행하고, 실험 치와 비교 분석하여 용접잔류응력을 고려한 응력 진폭-피로수명($(\sigma_a)_R-N_f$) 관계를 도출하여 자동적으로 피로설계기준을 제시할 수 있도록 하고자 하였다.

특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구 (A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.