• Title/Summary/Keyword: Spot measurement

Search Result 234, Processing Time 0.025 seconds

A Study on the Back shape and self-conscious symptoms of the students in S High school Using the Moire measurement and Questionnaire investigation (모아레 측정법과 설문지 조사를 통한 경기도 S고등학교 재학생의 신체자각증상과 배부체형에 대한 실태조사)

  • Chang, Gyu-Tae;Kim, Jang-Hyun;Baek, Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.55-74
    • /
    • 2003
  • Objective : The purpose of this study was to investigate the back shape and self-conscious symptoms of the students in S High school using the phase-shifting scanning grating projection Moire interferometer and Questionnaire investigations. Methods : In this study the subjects consisted of 317 pupils[168 boys(53%), 149girls(47%)] attending S high school in Sungnamsi, Kyoungkido in 2002. Their ages ranged from sixteen to eighteen. With the phase-shifting scanning grating projection moire interferometer, the posterior views of the body were taken to see if there are correlation of remainder value of the height spot of left & right shoulder blade and gluteal region in Moire topography. And using questionnaire investigation, we investigated the self-conscious symptoms. Results : 1. In questionnaire investigation, we observed that the ratios of self-conscious symptoms of girls are more than that of boys. The ratios of headache, neck pain, lower back pain, digestive symptom were more than 70% in boys and girls. 2. In Moire topography, more frequent findings of scapular region were observed that left scapular area were higher than right(in boys 69.3%, 60%, 100%, aged 16,17,18, in girls 66.8%, 40.5%, 58.8% aged 16,17,18). 3. More frequent findings of gluteal region were observed that left scapular area were higher than right(in boys 75.2%, 60%, 36.4% aged 16,17,18, in girls 61.1%, 46.8%, 64.7% aged 16,17,18) 4. More frequent findings of reminder value of the vertical lines of cervical and buttock region in Moire topography were observed that the vertical lines of cervical region were inclined to left than the vertical lines of buttock(in boys 73.3%, 92.2%, 100% aged 16,17,18, in girls 72.2%, 77.2%, 73.5% aged 16,17,18) Conclusion : From these results, we found that the self-conscious symptoms were more than in girls than boys; the ratio of headache, neck pain, Lower back pain, digestive symptom was more than the others; the back shape of high school students were not balanced in scapular and buttock region; necks were inclined to left than buttock.

  • PDF

Detection of a Surface-Breaking Crack Using the Surface Wave of a Laser Ultrasound (레이저 초음파의 표면파를 이용한 표면결함 측정)

  • Park, Seung-Kyu;Jung, Hyun-Kyu;Baik, Sung-Hoon;Lim, Chang-Hwan;Joo, Young-Sang;Kang, Young-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasounds by using laser beams. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this paper, we have investigated the detection techniques of a surface-breaking crack by using the laser ultrasonic surface waves. A crack acts as a low pass filter whose cut-off frequency is lowered in proportion to the depth of a crack. And, the center frequency value of a spectrum is decreased in proportion to the depth of a crack. In this paper, we extracted the crack information by using the frequency attenuation from the normalized transfer function spectrum of a surface-breaking crack. Also, we effectively measured the crack depth by using the decreasing value of the center frequency from a crack passed ultrasonic signal. The proposed measuring techniques of crack depths provided more precise information than the amplitude measuring technique.

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

A Fundamental Study for the Automatic Control System in Greenhouse Using Microcomputer(III) -A variation of temperature and humidity by the window opening ways of the even-Span type house- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(III) -양지붕형 하우스의 창 개방방법에 따른 온.습도의 변화-)

  • 김진현;김철수;구건효;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • The ventilation in greenhouse have been important for such as adjustment of temperature, supplying of the oxygen, prevention of the overhumidity, density adjustment of $CO_2$, discharge of harmfulness gas, etc. However, the general ventilation which had been used the quantitative control method in discharge of a property of air mechanism in greenhouse, and caused mainly in waste of the heating energy and growth obstacle of the vegetable. Therefore, this study was peformed to obtain more scientific ventilation method using by analysis and measurement of the isothermal lines according to opening of window ventilation in greenhouse, and the results are summarized as follows. 1. The ventilating amount was more influenced by rather opening amount of window than the ventilating time. 2. In window ventilation, the temperature in greenhouse was mostly changed within 5 minutes after ventilating not regard to the spot of opening, after about 10 minutes temperature became to equilibrium state under the respective ventilating conditions. 3. In opening of the skylight only, isothermal lines were complicated, therefore, a tall vegetable may be possible to damage by a cold-weather from the lower central port in greenhouse. 4. Isothermal lines were a tendency to simply in opening of a side window that may be more effective ventilation in kinds of the short vegetable. 5. In conditions of internal temperature>setting temperature>external temperature, a skylight can be suitable to open 10~20cm in order to the optimum ventilation in greenhouse. 6. In conditions of internal temperature>external temperature>setting temperature, opening of all the windows or both the side windows that can be suitable in order to obtain the optimum ventilation in greenhouse. 7. An effect of ventilation was the most excellent to open of all the windows or both the side windows, and it were also found orderly excellent to open of the side window and the skylight or the skylight only, to open of the side window only. 8. Temperature was varied as the equation of T=Tc+ (To-Tc)e-at, and the ranges of (a) values were limited within 0.34~0.68. 9. A variations of humidity were similar to that of temperature, s.

  • PDF

Raman Spectromter for Detection of Chemicals on a Road (지표면 화학물질 측정을 위한 라만분광장치)

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • In this paper, a Raman spectrometer is designed to detect chemicals contaminating the ground. The system is based on Raman spectroscopy, which is spectral analysis of scattered light from chemicals, induced by a laser. The system consists of a transmitting-optics module with a laser to induce Raman-scattered light from the sample, a receiving-optics module to collect the scattered light, and a spectrograph to separate the collected light into a wavelength spectrum. The telescope, a part of the receiving-optics module, is designed to produce a focal spot in the same position for variable measurement distances using the code V simulator, considering the distance change between the system and the road. The Raman spectra of 12 chemicals on a glass surface and on a concrete sample were measured. Intensity differences between the Raman spectra acquired on a glass surface and on a concrete sample were observed, but the characteristics of the spectra according to the chemicals on them were similar. Additionally, the Raman spectrum of PTFE (polytetrafluoroethylene) was measured at various distances. The measured and simulated optical throughputs were similar. In conclusion, it is confirmed that with this system the Raman spectrum can be measured, irrespective of the distance change.

A Study on Energy Efficiency Improvement through Building Insulation Diagnosis (건축물 단열 진단을 통한 에너지 효율 개선에 관한 연구)

  • Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.9-14
    • /
    • 2021
  • This paper discovers the energy loss factors through the insulation diagnosis of houses or buildings, and proposes directions for energy efficiency improvement. The energy efficiency factor of a building consists of insulation diagnosis, thermal bridge diagnosis, window diagnosis, airtight diagnosis, and equipment diagnosis. Among the residents and facilities in the energy welfare blind spot, an energy efficiency diagnosis was conducted for one senior citizen building located in Naju-si, Jeollanam-do, and energy efficiency diagnosis was conducted after insulation was installed. Energy measurement, diagnosis and analysis were performed using the IoT-based integrated wired/wireless energy diagnosis platform, Energy Finder. As a result of comparison, an overall energy saving rate of 16.38% was achieved. Annual heating energy consumption per unit area decreased from 333.51kWh before construction to 277.35kWh after construction, and annual cooling energy consumption per unit area decreased from 5.51kWh before construction to 5.22kWh after construction. The annual primary energy consumption per unit area decreased from 464.52kWh before construction to 403.69kWh after construction, and the annual energy cost was reduced from 3,063,307.14 won before construction to 2,641,072.49 won after construction. The additional improvement work is needed on the standards affecting energy efficiency other than insulation.

Study on the Discoloration Identified from the Column of Wooden house, Hyunchungsa(Shrine) - Focused on Influence of Microorganisms and Correlation with Strength - (현충사 옛집의 기둥 하부 변색에 관한 연구 - 미생물에 의한 영향 및 강도와의 상관관계를 중심으로 -)

  • Jeong, So-young;Seo, Min-seok;Hong, Jin-young;Kim, Soo-ji;Jeong, Ah-ruem;Kim, Ji-seo
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.58-73
    • /
    • 2014
  • In general, it is thought discoloration on wood is frequently found in decorative wood products. So this study was conducted focusing on white rot found lower parts of columns and baseboards of a wooden house, Hyunchungsa (shrine) to know whether microorganisms have any influence on discoloration or there is correlation with strength by investigating resistograph, occurrence of microorganisms and microscopy for analysis(SEM, tissue analysis etc.). The results obtained were as follows: (1) The result of measurement of resistograph showed there are little correlation between discoloration and strength though there was a spot indicating low resistance. (2) The moisture content of discolored part was relatively higher than that of normal parts, but occurrence of microorganisms was less in discolored parts while more kinds of microorganisms were identified in normal parts with high CFU(Colony Forming Unit). (3) The result of SEM (with a magnification of 500 times) on the surface of discolored parts, it was found out there are many kinds of particles in different sizes on the surface and those were composed of elements such as C, O, Si, Ca, and a small amount of Na and Cl (weight %) were detected in part. (4) The result of tissue analysis showed discoloration occurs limitedly to the outer surface of column. As these results, it is concluded that discoloration has nothing to do with strength, damage by microorganisms and salt.

A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment (에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구)

  • Lee, Tae Gyu;Choi, Kyeong Seo;Shin, Youn Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.217-224
    • /
    • 2022
  • Today, with the development of technology and industry, fire accidents in special buildings are increasing as special buildings increase. However, despite the rapid development of information and communication technology, human casualties are steadily occurring due to the underdeveloped and ineffective indoor fire alarm system. In this study, we confirmed that the existing indoor fire alarm system using acoustic alarm could not deliver a sufficiently large alarm to the in-room personnel. To improve this, we designed and implemented a fire alarm system using edge computing and beacons. The proposed improved fire alarm system consists of terminal sensor nodes, edge nodes, a user application, and a server. The terminal sensor nodes collect indoor environment data and send it to the edge node, and the edge node monitors whether a fire occurs through the transmitted sensor value. In addition, the edge node continuously generate beacon signals to collect information of smart devices with user applications installed within the signal range, store them in a server database, and send application push-type fire alarms to all in-room personnel based on the collected user information. As a result of conducting a signal valid range measurement experiment in a university building with dense lecture rooms, it was confirmed that device information was normally collected within the beacon signal range of the edge node and a fire alarm was quickly sent to specific users. Through this, it was confirmed that the "blind spot problem of the alarm" was solved by flexibly collecting information of visitors that changes time to time and sending the alarm to a smart device very adjacent to the people. In addition, through the analysis of the experimental results, a plan to effectively apply the proposed fire alarm system according to the characteristics of the indoor space was proposed.

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.