• Title/Summary/Keyword: Spot welding

Search Result 660, Processing Time 0.024 seconds

Structural Stress and Fatigue Testing of Edge details (용접부 구조응력 측정 및 피로수명 평가에 관한 실험적 연구)

  • 김석훈;강성원;김명현;장용원;하우일;박진수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.267-269
    • /
    • 2004
  • 현재 구조물의 피로설계에는 주로 공칭응력(Nominal Stress) 및 핫스팟 응력(Hot Spot Stress, HSS)이 사용되고 있다. 공칭응력을 바탕으로 구조물에 대한 피로설계를 할 경우에는 각 부재에 사용되는 각각의 용접부 형상에 대한 피로시험을 따로 수행하여 피로수명 곡선을 구해야 하는 번거로움이 있다. (중략)

  • PDF

Research trends in the field of spot welding (점 용접의 연구동향)

  • 이강용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-17
    • /
    • 1989
  • 전기저항을 이용하여 두께가 1-7mm(0.03-0.27in)의 얇은 구조물을 국부적으로 융착시켜 접합하는 점용접은 자동차 및 항공기 부품산업에 활용도가 높아지고 있다. 구조물 접합시 점 용접은 너깃 주위의 열영향부에 잔류응력이 발생하므로 정적강도와 피로강도를 저하시키려는 원인이 되고 있다. 따라서 강도의 저하를 방지하기 위하여 용접시간, 용접전류량, 용접 가압력 등에 대한 최적 용접조건을 설정하기 위한 연구가 많이 진행중에 있다.

  • PDF

Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration (핫스템핑 공정에서 가열온도 및 유지시간을 고려한 22MnB5의 단일겹치기 저항 점용접 조건 최적화)

  • Choi, Hong-Seok;Kim, Byung-Min;Park, Geun-Hwan;Lim, Woo-Seung;Lee, Sun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1367-1375
    • /
    • 2010
  • In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

A Study on the Health Evaluation in Spot Welded Zone by Using Optical Pulse and Lock-in Phase Infrared Thermography (광원 펄스와 위상잠금 적외선 열화상을 이용한 점용접부의 건전성 평가 연구)

  • Park, Hee Sang;Choi, Mang Yong;Kwon, Koo Ahn;Park, Jeong Hak;Kim, Won Tae;Lee, Bo Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • The non-destructive testing using infrared thermography is extended to a variety of industries and non-destructive testing of welds using infrared thermography is also in progress in various ways. Currently, a non-destructive testing of electrical resistance spot welds which is mainly used is Radiography Testing. This study detected area of spot welds nugget using optical-infrared thermography. In the results, it is possible for detecting defects of nugget in a short period of time using pulse-infrared thermography.

A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods (다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Joo-Han;Kim, Jong-Hyeong;Ahn, Hyo-Sok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

Study On development of Intelligent spot weld machine (지능형 스폿 용접기 개발에 관한 연구)

  • Lee, Hui-Jun;Rhee, Se-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.20-20
    • /
    • 2009
  • 저항 점 용접은 1930년대에 Thomson에 의해 방법이 제안된 이후로 자동차, 전자, 항공기, 철도산업등에서 박판 금속(sheet metal)의 접합에 가장 널리 사용되고 있는 공정이다. 특히 자동차 차체와 같이 대부분 박판으로 구성되는 구조물에서는 저항 점 용접의 사용 범위가 매우 넓기 때문에 자동차 산업에서는 가장 기본적인 근본 기술 중의 하나로 인식되고 있다. 보통 자동차 한대를 생산하는데 소요되는 저항 점 용접 타점은 3000~4000개 정도로 자동차 차체 용접 공정의 대부분을 차지하고 있다. 또한 로봇과 연동된 자동화 공정으로 적용되고 있다. 최근의 자동차 차체를 구성하는 금속 재료가 자동차의 경량화, 친화경 소재의 사용자의 요구로 인해 새로운 강판이 사용된다. 자동차의 연비 향상을 위해서 다른 방법보다 자동차의 무게를 감소시키는 것이 가장 효율적이고, 쉽기 때문에 고장력 강판의 사용이 급속하게 증가하고 있다. 뿐만 아니라 차제의 부식성, 내마모성 향상을 위해 도금 처리된 강판의 사용도 활발하게 이루어지고 있다. 최근에 도장 공정 감소를 위해 도금 처리위에 도료 착색을 용이하게 하는 도료의 일부를 금속 표면에 처리된 강판의 개발도 진행되는 등 금속 소재의 변화가 다양하게 진행되고 있다. 이러한 새로운 강종은 기존의 AC 용접이나 DC 용접으로는 용접성 확보에 어려움을 가지고 있어, 새로운 저항 점 용접 공정의 연구 개발이 필요하다. 본 연구에서는 저항 점 용접 공정의 개선을 위해서 인버터 저항 점 용접기에서 용접 공정 중 전류를 제어하기 위한 효율적인 제어기 개발 방법과 개발된 제어기를 바탕으로 용접 중에 용접부의 품질을 예측하여, 용접 전류 및 가압력을 실시간 제어하여 안정적인 용접부의 품질을 갖질 수 있는 지능형 저항 점 용접기의 적응 제어기를 개발하는데 있다.

  • PDF

Reverse Design of F-Theta Lens for Compact Laser Scanner (소형 2차원 레이저 스캐너용 F-theta 렌즈 역설계)

  • Choi, Hae Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.213-218
    • /
    • 2017
  • In this study, a reverse design of the F-theta lens was proposed for a 2D scanner in remote welding applications. The curvature and distance of the lens were set as variables, and the focal length of the lens was set as the marginal ray height. The ZEMAX commercial software was used to perform a simulation with unlimited iterations for the optimization process. The target value was optimized using the internal Merit function with the weight factors of focal length and spot diameter. The number of lenses was four, and the focal length obtained from the results was 135mm that is slightly less than that of the commercial lens, which is set with a focal length of 185 mm. The calculated spot diameters are $1.3{\mu}m$, $6.2{\mu}m$, and $16.1{\mu}m$ for $0^{\circ}$, $12.5^{\circ}$ and $23^{\circ}$ of incident laser beam, respectively. It is expected that an optimized lens design is possible by performing the reverse design of a lens by the ray tracing method.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF

Comparison of Fatigue Provisions in Various Codes and Standards -Part 1: Basic Design S-N Curves of Non-Tubular Steel Members

  • Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.161-171
    • /
    • 2021
  • For the fatigue design of offshore structures, it is essential to understand and use the S-N curves specified in various industry standards and codes. This study compared the characteristics of the S-N curves for five major codes. The codes reviewed in this paper were DNV Classification Rules (DNV GL, 2016), ABS Classification Rules (ABS, 2003), British Standards (BSI, 2015), International Welding Association Standards (IIW, 2008), and European Standards (BSI, 2005). Types of stress, such as nominal stress, hot-spot stress, and effective notch stress, were analyzed according to the code. The basic shape of the S-N curve for each code was analyzed. A review of the survival probability of the basic design S-N curve for each code was performed. Finally, the impact on the conservatism of the design was analyzed by comparing the S-N curves of three grades D, E, and F by the five codes. The results presented in this paper are considered to be a good guideline for the fatigue design of offshore structures because the S-N curves of the five most-used codes were analyzed in depth.

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.