• Title/Summary/Keyword: Sport Climbing

Search Result 32, Processing Time 0.047 seconds

Biomechanical Application of Plantar Pressure Distribution for Walking on Uneven Rocky Surface (Uneven Rocky Surface 이동 시 압력분포를 적용한 운동역학적 활용)

  • Chung, Yong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.387-397
    • /
    • 2009
  • Physical activity has been increased with increased leasure time. Specifically, due to our mountainous geographical benefits, people actively participate in hiking and climbing as regular daily activities. Thus, more stable and comfortable hiking boots are required to walk on uneven and sloped rocky surface for a long period of time. 5 male subjects were recruited for testing planter pressure patterns of four different conditions(barefoot, classic hiking boot, stiffness 60 and stiffness 65). Tested hiking boots(stiffness 60 and stiffness 65) consists of the multiple pieces of outsoles as they are designed for a better shock absorption. In the results, some positive aspects of stiffness 60 and stiffness 65 such as wide contact area and powerful propulsive patterns at take off was observed compared to the classic hiking boots. Therefore, biomechanical development of hiking related clothes and footwear as well as equipment would be beneficial for people who enjoy hiking to maximize their quality of activities.

Kinematic Analysis on Giant Swing Backward to Handstand on Parallel Bars (평행봉 뒤 휘돌리기 동작의 운동학적 분석)

  • Ahn, Wan-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.27-40
    • /
    • 2004
  • The objective of this study is to identify the kinematic variables of giant swing backward to handstand as well as individual variations of each athlete performing this skill, which in turn will provide the basis for developing suitable training methods and for improving athlete's performance in actual games. For this end, 3 male athletes, members of the national team, who are in ${\Box}{\Box}H{\Box}{\Box}$ University, have been randomly chosen and their giant swing backward to handstand performance was recorded using two digital cameras and analyzed in 3 dimensional graphics. This study came to the following conclusion. 1. Proper time allocation for giant swing backward to handstand are: Phase 1 should provide enough time to attain energy for swing track of a grand round movement. The phase 3 is to throw the body up high in the air and stay in the air as long as possible to smoothen up the transition to the next stage and the phase 4 should be kept short with the moment arm coefficient of the body reduced. 2. As for appropriate changes of locations of body center, the phase 1 should be comprised of horizontal, perpendicular, compositional to make up a big rotational radius. Up to the Phase 3 the changes of displacements of vertical locations should be a good scale and athlete's body should go up high quickly to increase the perpendicular climbing power 3. When it comes to the speed changes of body center, the vertical and horizontal speed should be spurred by the reaction of the body in Phase 2 and Phase 3. In the Phase 4, fast vertical speed throws the body center up high to ensure enough time for in-the-air movement. 4. The changes of angles of body center are: in Phase 2, shoulder joint is stretching and coxa should be curved up to utilize the body reaction. In the Phase 4, shoulder joint and coxa should be stretched out to get the body center as high as possible in the air for stable landing. 5. The speeds of changes in joints angles are: in the Phase 2 should have the speed of angles of shoulder joints increase to get the body up in the air as quickly as possible. The Phase 3 should have the speed of angles in shoulder joint slow down, while putting the angles of a knee joint up to speed as quickly as possible to ensure enough time for in-the-air movement.

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Effects of Resistance Training on BMD and Bone Metabolism Related Markers in Aging Rats (저항성 훈련이 노화흰쥐의 골밀도 및 골대사 관련 지표에 미치는 영향)

  • Kang, Hyung-Sook;Kim, Sang-Bae;Yoon, Jin-Hwan
    • 한국노년학
    • /
    • v.31 no.2
    • /
    • pp.303-315
    • /
    • 2011
  • The purpose of this study was to investigate effect of resistance training on BMD and bone metabolism related markers in aging rats. Thirty male Spraugue-Daweley rats were divided into sedentary (CON; n=10 ) non-load resistance trained(NLRTG; n=10), and load resistance trained(LRTG; n=10) groups at the age of 64 weeks. The rats in the resistance training groups((NLRTG and LRTG) performed the tower climbing exercise 4 times a week. The LRTG groups were conditioned to climb a vertical ladder with weights appended to their tail 4 days/wk for 12 wks. After 12 weeks of exercise, serum osteocalcin, bone mineral density (BMD), breaking force, ash, Ca, and P in the femur were measured. After training, serum osteocalcin (OC) was significantly (p < 0.05) higher in both LRTG and NLRTG when compared to Control. Right femur BMD was significantly (p < 0.05) greater for LRTG when compared to both NLRTG and Control with no significant difference between NLRTG and Conrtol. The breaking force of femur was significantly (p < 0.05) greater for LRTG and NLRTG when compared to Control. The Ash, Ca, content of femur were significantly increased in resistance training groups than control group. These results suggest that the increase in bone mineral density induced by resistance training is mediated by changes in bone microarchitecture as well as training intensity and osteocalcin.

Design Suggestion of Active T-shirt According to the Exercise Types in the Silver Generation (실버세대의 운동유형에 따른 액티브 티셔츠 디자인 제안)

  • Kim, Young-Soon;Koo, Young-Seok
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.881-894
    • /
    • 2015
  • The silver generation have clothing style of optimal daily life comparing than young generation because they do not participate a specific sport event but daily- life exercise. As the human body ages, the figure of the silver generation shows different body shape because upper body changes to curved figure including the belly and waist part. Therefore, clothing characteristics for the silver generation should be considered with proper function, design and textiles to optimize body movement. This study investigated various exercise types according to motion analysis of the silver generation in order to develop the design of the active T-shirts reflecting the structural properties and providing the optimum exercise circumstance. The results to consider design needs are as followed; As the T-shirts design for the flexible exercise which required frequent movement of upper body such as bending and waist twisting during body stretching, a stretch fabric applied to the waist part considering T-shirts allowance and length to make extreme elongation and support for well-fitting appearance of the T-shirts. As the T-shirts design for the instantaneous reactionary exercise, high elastic four-way stretch fabric is applied to the part of arm hole to optimize skeletal and muscle movement for entire body and arm work. As the T-shirts design for the endurance exercise such as climbing, cycling, and walking, the shoulder line of the back part has cutting line allowance to make optimum movement of the upper body but no change of the waist part.

The Intensification of the Environmental Education in Physical Education (체육과에서의 환경교육 강화 방안)

  • 조미혜
    • Hwankyungkyoyuk
    • /
    • v.12 no.1
    • /
    • pp.189-204
    • /
    • 1999
  • Recently, the interest in artificial environment made by mankind as well as natural environment has been increased. This interest in the environment began to be reflected in the physical education, which environmental problems affect modern people's living quality as a crucial factor affecting directly or indirectly our life. Furthermore, since we entered the era of mass sports the physical education subject has dealt with destruction of natural environment by constructing golf courses, ski slopes, etc., destruction of ecosystem by water sports, mountaineering sports, aero sports, etc., and noise pollution near the sport facilities. Therefore, the purpose of this paper is to examine the means to reinforce environmental education in many ways in the physical education concerning environmental problems. For this purpose this paper analyzed the contents of the 7th curriculum for physical education which can be thought to be teaching materials for environmental education, and described the contents in detail. Also, this paper established the orientation and goals of environmental education in the physical education subject and examined some important teaching and learning methods. In addition, this paper suggested some considerations concerning environmental education and a textbook model for the development of physical education textbooks connecting with the 7th curriculum for physical education, which is to suggest a means to connect physical education with environmental education smoothly. The physical education has an attribute that its activities like swimming, climbing mountains, and camping are performed outdoor. The physical activities in the physical education are, of course, performed in the environment, so we had better implement the environmental education including such physical activities at the same time with physical education. Also, there should be efforts so that the education through environment, the education about environment, and the education in the environment can be implemented along with the physical education.

  • PDF

Effect of resistance training at different intensities on hippocampal neurotrophic factors and peripheral CCL11 levels in obese mice

  • Woo, Jinhee;Roh, Hee-Tae;Park, Chan-Ho;Yoon, Byung-Kon;Kim, Do-Yeon;Shin, Ki-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.876-884
    • /
    • 2019
  • We investigated the effect of moderate- and high-intensity resistance training on hippocampal neurotrophic factors and peripheral CCL11 levels in high-fat diet (HFD)-induced obese mice. C57/black male mice received a 4 weeks diet of normal (control, CON; n = 9) or a high-fat diet (HF; n = 27) to induce obesity. Thereafter, the HF group was subdivided equally into the HF, HF + moderate-intensity exercise (HFME), and HF + high-intensity exercise (HFHE) groups (n = 9, respectively), and mice were subjected to ladder-climbing exercise for 8 weeks. The hippocampal brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels were significantly lower in the HF group than in the CON group (p < 0.05). In addition, in the HFME and HFHE groups were significantly higher than in the HF group (p < 0.05). The peripheral CCL11 levels were significantly higher in the HF group than in the CON group (p < 0.05). In addition, in the HFME and HFHE groups were significantly lower than in the HF group (p < 0.05). However, there was no significant difference according to the exercise intensity among the groups. Collectively, these results suggest that obesity can induce down-regulation of neurotrophic factors and inhibition of neurogenesis. In contrast, regardless of exercise intensity, resistance training may have a positive effect on improving brain function by inducing increased expression of neurotrophic factors.

Effects of Different Intensity Aerobic and Resistance Exercise on Anti-diabetic and Lipid Profile Improvement in Type 2 Diabetic mice (다른 강도의 유산소성 및 저항성 운동이 제2형 당뇨 마우스의 항당뇨, 지질 개선에 미치는 영향)

  • Yoon, Byung-Kon;Park, Chan-Ho;Woo, Jin-Hee;Shin, Ki-Ok;Roh, Hee-Tae;Kim, Do-Yeon;Kim, Jung-Sook;Ha, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1108-1118
    • /
    • 2019
  • The purpose of this study was to examine the effects of aerobic and resistance exercise of different intensity on anti-diabetic and lipid profile improvement in type 2 diabetic mice. C57BL/6 mice were divided into six groups (n=8, in each group): normal group (Normal), type 2 diabetes (DM), type 2 diabetes+VO2max 50% aerobic exercise group (DM50A), type 2 diabetes+VO2max 75% aerobic exercise group (DM75A), type 2 diabetes+1RM 50% resistance exercise group (DM50R), and type 2 diabetes+1RM 75% resistance group (DM75R). DM50A and DM75A were subjected to treadmill exercise 40 min/day, 5 days/week, during 8 weeks (DM50A, at the speed of 8 m/min for 1-4 weeks and 8~10 m/min for 5-8 weeks; DM75A, 12 m/min for 1-4 weeks and 12~14 m/min for 5-8weeks). DM50R (1RM50%) and DM75R (1RM75%) were subjected to ladder-climbing exercise with weights secured to their tails, 8 set/day, 5 days/week, during 8 weeks. After 8 weeks of exercise, fasting blood glucose and HOMA-IR was significantly lower in DM group than in DM group. HbA1c showed significantly lower DM50R and DM75R groups than DM group. HDL-C showed the highest level in DM75A group and triglyceride was lowest in DM75R group. The cardiovascular risk index was lowest in the Normal and DM75A groups. Therefore, moderate intensity exercise in T2DM mice showed better improvement in blood glucose and insulin resistance control, and moderate intensity aerobic exercise was effective in reducing the cardiovascular risk index by increasing HDL-C levels.

Analysis on the Degree of Preference and Participation in Leisure Sports : PPA Based on Priorities for Financial Investment (정책투자우선순위 도출을 위한 레저스포츠 선호도와 참여도 분석)

  • Kim, Kyong-Sik;Koo, Kyong-Ja;Jin, Eun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.407-415
    • /
    • 2009
  • In this research, to identify the degree of preference and participation in leisure sports, over 19-year-old adults living in the capital region were collected as subjects, and among them, 250 persons were chosen by purposive sampling method. Using SPSSWIN 16.0, I analyzed the collected data by reliability analysis, paired sample t-test, PPA(preference performance analysis) method. The conclusion is the following. First, the first quadrant showed wind surfing, skins-cuba, water-ski, and yacht, and as a result of this, it is necessary to improve the degree of participation in this field, the second quadrant showed golf, racketball snow board, ski, fishing, and climbing, and these field need to specific attention to maintain continuous attention, for they have a great deal of attendance, the third quadrant, showed water sleigh, cart, balloon, sky-diving, orienteering, hang gliding, model plane, and survival game. As the degree of preference and participation in these sports is low, it is recommended that more effort should be made for these sports. Finally, in the forth quadrant, there are tracking, mountain bike, inline skates, rafting, and cycling. As it's the participation is high, while that of preference is low, it is important to maintain the policy of the participation in leisure sports. Sencondly, the degree of preference and participation in leisure sport activicties acording to socio demographic characteristics differentiate.

Effects of Exercise Type on ẞ-Amyloid, BDNF and Cognitive Function in Type 2 Diabetic Mice (제 2형 당뇨 마우스의 운동 형태가 ẞ-Amyloid, BDNF 및 인지기능에 미치는 영향)

  • Kim, Do-Yeon;Woo, Jinhee;Shin, Ki-Ok;Roh, Hee-Tae;Lee, Yul-Hyo;Yoon, Byung-Kon;Park, Chan-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • The purpose of this study was to investigate the effects of different types of exercise training on ẞ-Amyloid, Brain-Derived Nerurotrophic Factor(BDNF) and cognitive function in mice with Diabetes Mellitus Group(DM.G). 24 male C57BL/6 mice were randomly assigned to the control (C.G. n = 6) and Diabetes Mellitus Group(DM.G. n = 18) groups. After the Diabetes Mellitus induction period, the DM group was subdivided into DM.G. + sedentary (DM.G., n = 6), DM.G. + endurance exercise (A.G, n = 6), and DM.G. + resistance exercise (R.G., n = 6). The A.G. and R.G performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. After 8 weeks the results are as follows: ẞ-Amyloid showed higher levels of DM.G. than in A.G., R.G., and C.G., but was not statistically significant(p>.05). BDNF was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). The Y-maze task performance for cognitive function was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). These results predict that diabetes can negatively affect ẞ-Amyloid, BDNF and cognitive function. It can also be predicted that low-intensity exercise can positively improve ẞ-Amyloid, BDNF and cognitive function regardless of the type of exercise.