• Title/Summary/Keyword: Sport Biomechanics

Search Result 1,120, Processing Time 0.023 seconds

Gender Dfferences in Ground Reaction Force Components

  • Park, Sang-Kyoon;Koo, Seungbum;Yoon, Suk-Hoon;Park, Sangheon;Kim, Yongcheol;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2018
  • Objective: The aim of this study was to investigate gender differences in ground reaction force (GRF) components among different speeds of running. Method: Twenty men ($age=22.4{\pm}1.6years$, $mass=73.4{\pm}8.4kg$, $height=176.2{\pm}5.6cm$) and twenty women ($age=20.7{\pm}1.2years$, $mass=55.0{\pm}8.2kg$, $height=163.9{\pm}5.3cm$) participated in this study. All participants were asked to run on an instrumented dual belt treadmill (Bertec, USA) at 8, 12, and 16 km/h for 3 min, after warming up. GRF data were collected from 30 strides while they were running. Hypotheses were tested using one-way ANOVA, and level of significance was set at p-value <.05. Results: The time to passive peaks was significantly earlier in women than in men at three different running speeds (p<.05). Further, the impact loading rates were significantly greater in women than in men at three different running speeds (p<.05). Moreover, the propulsive peak at 8 km/h, which is the slowest running speed, was significantly greater in women than in men (p<.05), and the vertical impulse at 16 km/h, which is the fastest running speed, was significantly greater in men than in women (p<.05). The absolute anteroposterior impulse at 8 km/h was significantly greater in women than in men (p<.05). In addition, as the running speed increased, impact peak, active peak, impact loading rate, breaking peak, propulsive peak, and anteroposterior impulse were significantly increased, but vertical impulse was significantly decreased (p<.05). Conclusion: The impact loading rate is greater in women than in men regardless of different running speeds. Therefore, female runners might be exposed to the risk of potential injuries related to the bone and ligament. Moreover, increased running speeds could lead to higher possibility of running injuries.

Kinematic Analysis of Women's 100-m Final during IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 100 m 여자 결승전의 운동학적 분석)

  • Ryu, Ji-Seon;Ryu, Jae-Kyun;Kim, Tae-Sam;Park, Young-Jin;Hwang, Won-Seob;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.521-528
    • /
    • 2011
  • The purpose of this study was to analyze the kinematic characteristics of the finalists in the women's 100 m event to provide important information to coaches and athletes. Three different biomechanics techniques were applied for analyzing sprinter motion: LAVEG, a panning technique, and 12 video cameras for 3 dimensional analysis of the 40 m - 70 m portion of the race. Carmelita Jeter(USA) performed the maximum speed of 10.54 m/s at the distance of 58.2 m. There was a tendency to show a better performance time with a high number of steps (p=.13) and shorter stride length (p=.14) among the 8 sprints. Furthermore, the stride frequency and the performance time were negatively correlated as a higher stride frequency had a positive impact on the performance time (p=.02). Based on 3 dimensional analysis, the 4 top ranked sprinters used the different strategies to maintain a high COM (Center of Mass) velocity during the mid portion of the race (40 m - 70 m). Carmelita Jeter(USA) showed more flexed knee and hip motion at heel contact (HC) to maintain a high COM velocity while S.A. Fraser-Pryce (JAM) showed more extended knee and hip motion at HC. On the other hands, Veronica Campbell-Brown (JAM) and Kelly-Ann Baptiste (TRI) showed a tendency to have high knee lifts during the swing phase to maintain the high COM velocity during the race. These biomechanical analyses of the women's 100 m final event in the 2011 WC, Daegu, will provide important scientific information to coaches and athletes for understanding the sprinting mechanism of today's top-class sprinters.

Biomechanical Analysis at the Start of Bobsleigh Run in Preparation for the 2018 Pyeongchang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2017
  • Objective: The bobsleigh shoes used in the start section are one of the most important equipment for improving the competition. Despite the importance of the start section, there are no shoes that are specific for bobsleigh athletes in Korea and Korean athletes have to wear sprint spike shoes and practice the start instead of wearing bobsleigh shoes. The objective of the present study was to provide data for improving the performance of Korean bobsleigh athletes by investigating the differences in their split time, plantar pressure, and forefoot bending angle based on skill levels at the start of a run under the same conditions as training conditions. Method: Six Korean bobsleigh athletes were divided into two groups, superior (n=3) and non-superior (n=3). A digital speedometer measured the split time at the start; the Pedar-X system (Novel, Germany) measured plantar pressure. Plantar pressures and split times were measured as the athletes pushed a bobsleigh and sprinted at full speed from the start line to the 10-m mark on the bobsleigh track. An ultra-high-speed camera was used to measure the forefoot bending angle during the start phase. Results: Significant between-group differences were found in split times (p<.000; superior = 2.38 s, non-superior = 2.52 s). The superior group had a larger rearfoot (p<.05) contact area, maximum rearfoot force (p<.01), and a larger change in angles 3 and 4 (p<.05). Conclusion: At the start of a bobsleigh run, proper use of the rearfoot for achieving effective driving force and increasing frictional resistance through a wider frictional force can shorten start time.

The Analysis of Electromyography and Kinematic of Kumdo Player's Head Hitting (검도 머리치기 동작의 근전도 및 운동학적 분석)

  • Park, Jong-Rul
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2005
  • J. R. PARK. The Analysis of Electrimyography and Kinematic of Kumdo Player's Head Hitting. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 63-74, 2005. The purpose of this study were to describe and compare the selected electromyographical muscle activities of arm and kinematic data of kumdo player's head hitting. Using surface electrode electromyography, we evaluated muscle activity in 6 male players during head hitting motion. Surface electrodes were used to record the level of muscle activity in the carpi radialis, deltoid, triceps, biceps muscles during the player's head hitting. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The kumdo head hitting motion was divided into two phases: back swing, down swing. we observed patterns of arm muscle activity throughout two phases of the kumdo head hiting The results can be summarized as follows: right elbow angle had decreased and left deltoid muscle's activation had higher than right deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in back swing phase, knee angle had decreased and left triceps muscle's activation had higher than right triceps muscle's activation, right deltoid muscle's activation had higher than left deltoid muscle's activation, right carpi radialis muscle's activation had higher than left carpi radialis muscle's activation in down swing phase

Change of Plantar Pressure Distribution of Open Stance during Forehand Stroke in Tennis (테니스 포핸드 스트로크 시 오픈스탠스의 족저압력분포의 변화)

  • Choi, Ji-Young;Kim, Seung-Jae;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.143-153
    • /
    • 2005
  • J.Y. CHOI,S. J. KIM, E. L. LEE. Change of plantar pressure Distribution of Open Stance during Forehand Strke in Tennis. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, PP. 143-153, 2005. Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and close stance and it is very important to know the patterns of plantar pressure distribution for the better understanding of forehand stroke. Therefore, the purpose of this study was to investigate the change of plantar pressure distribution in open stance during forehand stroke in tennis. Three high school tennis players were recruited for the study and required to perform forehand stroke five consecutive trials in the condition of open stance. The forehand strokes were filmed with two digital video cameras and measured with pedar system for plantar pressure. The plantar regions under the foot were divided into 3 regions, which were forefoot, midfoot, and rear foot. In conclusion, The plantar pressure of open stance during forehand stroke was distributed more largely to the right foot. The plantar pressure of open stance during forehand stroke was distributed more weight loads on forefoot of right than heel of right

A Kinematic Analysis of Glide Kip Motion on the Uneven Bars (이단 평행봉 차오르기 동작의 운동학적 분석)

  • Kim, Seung-Kwon;Kim, Seoung-Eun;Jang, Dae-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2013
  • The purpose of this study was to analyze the kinematic variables of glide kip motion on the uneven bars through a two-dimensional cinematography. Three expert female gymnastics players were involved in the data gathering process. The followings were concluded according to the results. The arm, trunk and leg segments were fully extended throughout the kip movement. The whole body center of gravity showed the biggest changes during 66 to 87% of the kip motion. During the kip phase, the horizontal displacement of the leg was greater than the vertical displacement the leg. Glide kip motion should be done in orders of upward movement of leg, forward movement of leg, upward movement of trunk and forward movement of trunk segment. It was found that trunk segment and hip joint movements showed bigger changes than those of leg segment and shoulder joint in the glide kip motion. The largest angular velocity of hip joint was shown in the middle of the kip Phase. In conclusion, effective kip movement could be resulted when the trunk was displaced posterior-upward direction with fast hip joint extension after the leg segment was elevated upward and thrusted forward in advance.

Isokinetic Performance and Shoulder Mobility in Pro League Woman Volleyball Players (프로리그 여자 배구 선수들의 어깨 관절 회전 기능에 대한 연구)

  • Lee, Byoung-Kwon;Han, Dong-Wook;Kang, Kyung-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.45-55
    • /
    • 2007
  • We investigated the biomechanics and characteristics of shoulder rotator muscles for professional woman volleyball players. The purpose of this study was to analyze the isokinetic peak torque and range of motion for shoulder joint rotation. We measured the strength and ROM of the internal rotation(IR) and external rotation(ER) of shoulders joint for nine professional woman Volleyball players and nine University students with Biodex and Simi-motion. 1. We measured peak torques for the shoulder joint rotator at angular velocities of 60/s and 180/s. It was found that the peak torques were significantly different between the two groups and also between the hands used. 2. At angular velocity of 60/s, IR/ER ratio of the shoulder joint was significantly different depending on the groups and the hands in use. There was a significant difference for 'Dominant side' at angular velocity of 180/s, but no significant difference for 'Non-dominant side' and the controls group. 3. Regarding the ROM of rotation of the shoulder joint group, IR was significantly different between the groups and the hands in use. 4. IR/ER ratio of the shoulder joint for Dominant side was quite different between the groups.

A Kinematic Analysis of the Upper-limb Motion of Wheelchair Basketball Free Throw Shooting (휠체어 농구 자유투 동작시 상지분절의 운동학적 분석)

  • Han, Hee-Chang;Yoon, Hee-Joong;Lee, Hoon-Pyo
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.181-197
    • /
    • 2003
  • The Purpose of this study was to examine the kinematic analysis of the upper-limb motion of wheelchair basketball free throw shooting. Three-dimensional kinematic data were obtained from 8 male wheelchair basketball players performing a successful free throw. Players were divided into three groups, according to their IWBF classification(Group 1: 1 point players, Group 2: 2-2.5point players and Group 3:3.5-4 point players) Wheelchair basketball free throw motions were taken by video camera. The three-dimensional coordinates was processed by DLT. Players from Group 1 and 2 tended to release the ball from a lower height, with greater velocity and release angle. Players from Group 1 showed greater shoulder horizontal adduction and horizontal abduction angle, wrist ulnar flexion and radial flexion angle, and trunk angle. but players from Group 2 appeared lower shoulder abduction. Upper limb angular velocity showed most greatly in hands from Group 1, upperarm from Group 2, and forearm from Group 3.

Evaluation of Gait Stability using Medio-Lateral Inclination Angle in Male Adults (좌·우 기울기각도를 이용한 남자 성인의 보행안정성 평가)

  • Chang, Jae-Kwan;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.261-266
    • /
    • 2010
  • Human body is hard to be in perfect balance during walking. Most of time the trunk is supported by one leg and the center of mass(COM) falls to the contralateral side. Thus, dynamic variables such as the velocity of the COM should be considered when gait stability is evaluated. The purpose of this study was to investigate whether the extrapolated center of mass(XCom) which utilized the COM position and its velocity, is appropriate to evaluate gait stability. Ten healthy adults participated in this study and performed 3 different types of gaits(normal(NG), hands on waists(HWG), and hands on shoulders(HSG)) onto 4 different types of obstacle(obstacle height: 0%, 30%, 40% and 50% of leg length). Medio-lateral Com-CoP and XCom-CoP inclination angle were calculated during support phase. For all condition, greater M-L XCoM-CoP inclination angles were found(p<.05) compared with those of matched obstacle height CoM-CoP. Especially, M-L XCoM-CoP inclination angle at 50% height revealed the best condition for monitoring dynamic stability. Significantly increased in M-L XCoM-CoP inclination angle was found(p<.05) as obstacle height increased on NG and HWG.

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.