• Title/Summary/Keyword: Sport Biomechanics

Search Result 1,123, Processing Time 0.026 seconds

Plantar Pressure in Skilled and Unskilled Players during Baseball Batting (야구 타격시 숙련자와 미숙련자의 족저압력 분석)

  • Moon, Won-Ho;Lee, Joong-Sook;Kim, Chang-Hyun;Jang, Young-Min;Jeong, Jin-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.25-35
    • /
    • 2013
  • This study examined 24 right-handed amateur baseball players. Twelve who had played baseball for more than 6 years were grouped as skilled players, while 12 who had played for 1-3 years were the unskilled player group. The swing motion was divided into four event phases: stance, backswing, impact, and follow-through. The mean and maximum plantar pressure, center of pressure, and ground reaction force were measured during each event phase. The mean and standard deviations for each variables were calculated and differences were validated with the independent sample t-test. A p-value <0.05 was considered statistically significant. The results were as follows. 1)The ideal stance is a stable, balanced position with more than 65% of weight on the right foot. There was significant difference in mean left plantar pressure, while the maximal plantar pressure and mean right plantar pressure did not differ significant. 2)The effective backswing of a skilled player is comprised a rightward shift in weight to build maximum energy. More than 90% of the weight was on the right foot. There was a significant difference in the mean left plantar pressure, while the maximal plantar pressure and mean right plantar pressure did not differ significantly. 3) For an effective impact, a rapid shift in weight to the left foot is essential, so that a power hit is obtained. Significant difference in the mean and maximum plantar pressures of both feet were observed. 4)Follow-through requires wight balance, more on the right than the left, without leaning leftward. There was no significant difference in the mean or maximum plantar pressure. 5)The center of plantar pressure should move from the center of the foot to the toe. 6)The analyses of the ground reaction force suggest that a good swing involves a gradual shift in weight to the right side and a rapid leftward shift at impact. Good balance, with the center of gravity on the right side at follow-through, is also required.

3-D Kinematic Analysis According to Open Stance Patterns During Forehand Stroke in Tennis (테니스 포핸드 스트로크 동안 오픈스탠스 조건에 따른 3차원 운동학적 분석)

  • Choi, Ji-Young;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.161-173
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVlEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined 1. In three dimensional maximum linear velocity of racket head the X axis showed $11.41{\pm}5.27m/s$ at impact, not the Y axis(horizontal direction) and the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. the stance distance between right foot and left foot was mean $74.2{\pm}11.2m$. 2. The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. and is followed by wrist joints, in addition the movement of elbow joints showed least to the stroke. The three dimensional anatomical angular displacement of racket increased flexion/abduction angle until the impact. after impact, The angular displacement of racket changed motion direction as extension/adduction. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed extension all around the forehand stroke. The angular displacement of trunk in adduction-abduction showed abduction at the backswing top and adduction around impact. while there is no significant internal-external rotation 4. The three dimensional anatomical angular displacement of hip joint and knee joint increased extension angle after minimum of knee joint angle in the forehand stroke, The three dimensional anatomical angular displacement of ankle joint showed plantar flexion, internal rotation and eversion in forehand stroke. it could be suggest that the plantar pressure of open stance during forehand stroke would be distributed more largely to the fore foot. and lateral side.

Changes of Setup Variables by the Change of Golf Club Length (골프 클럽의 길이 변화에 따른 준비 자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.95-104
    • /
    • 2005
  • To know the proper setup posture for the various clubs, changes of setup variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed videocameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. The variables divided into three categories 1) position and width of anterior-posterior direction 2) position and width of lateral direction 3) angles and evaluated based on the theories of many good golf teachers. Major findings of this study were as follows. 1.The stance (distance between ankle joints) was increased as the length of the club increased but the increasing width was not large. It ranges from 5cm to 10cm and professional player showed small changes. 2. Forward lean angle of trunk was decreased (more erected) as the length of the club increased. It ranges from 30 degrees for iron7 to 25 degrees for driver. 3. Angle between horizontal and right shoulder were increased as the length of the club increased. It ranges from 10 degrees to 20 degrees and professional player showed small changes. 4. Anterior-posterior position of the shoulders were located in front of the foot for all clubs and the difference between the shoulder and knee position was decreased as the length of the club increased. 5. Anterior-posterior position of grip (hand) was located almost beneath the shoulders (2.5cm front) for iron7, but it increased to 10cm for the driver. This grip adjustment makes the height of the posture increased only 5cm from iron7 to driver. 6. Lateral position of grip located at 5cm left for the face of iron7, but it located at the right side (behind) for the face of driver. 7. Lateral position of the ball located at the 40%(15cm) of stance from left ankle for iron7 and located at the 10% (5cm) of stance for driver. 8. Head always located at the right side of the stance and the midpoint of the eyes located at the 37% of stance from the right ankle for all clubs. This means that the axis of swing always maintained consistently for all clubs. 9. Left foot opened to the target for all subject and clubs. The maximum open angle was 25 degrees. Overall result shows that the changes of the setup variables vary only small ranges from iron7 to driver. Paradoxically it could be concluded that the failure of swing result from the excessive changes of setup not from the incorrect changes. These findings will be useful for evaluating the setup motion of golf swing and helpful to most golfers.

An Analysis of decision Factor on Drive Distance for University Golf Player's Object Execution Using Late Hitting Method (대학 골프선수들의 의도적 지연히팅 시 비거리 결정인자 분석)

  • So, Jea-Moo;Lim, Young-Tae;Kim, Yong-Seok;Cho, Bum-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this research was to conduct an analysis on the factors that determine the distance at the time of target swing based on the use of late hitting of outstanding college golfers to verify the difference between late hitting and the distance that target increases in regular swing and the distance. Then, this research conducts an analysis on the correlation between club head velocity, ball velocity, launch angle, back spin, meet ratio and distance that become kinematics variables at the time of target swing. To attain the above mentioned purpose, 25 outstanding college players with average experience and handicap of 6 years and 5, respectively, were targeted Comparative analysis on two swing that target increase in regular and the distance was conducted by used driver. When it pertained to two types of swing. analysis system comprised of an analytical software called the Science Eye of the Bridgestone and peripheries was used to define the relationship between variables of club head velocity, ball velocity, launch angle, back spin, meet ratio that become kinematics variables. As for the method of processing data pertaining to the factors that determine the distance, differences of distance by the type of swing was verified by using independent T-test that leveraged SPSS 120 statistics program. Moreover, level of correlation between variables that contribute to the increase in distance through relation of correlation, and analysis of tendencies was conducted to analyze tendency of non-distance to increase in accordance to the increase of each variable. Key results produced through this experiment are as follows: 1. Artificial late hitting for increased non-distance that targets skilled players had effect on increased the distance(p<. 05). 2 The drive distance is correlated with each measured variable that is positive correlation to ball velocity, club head velocity, meet ratio and relation of back spin and launch angle are negative correlation. ball velocity and club head velocity are very high correlated with drive distance(p<.01), back spin and distance are negative correlation(p<.01). 3. Among each measured variable increasing the club velocity is the most contribution, and ball velocity and meet ratio and the increasing launch angle and back spin is negative effect for increasing distance.

Kinematical Analysis of Tichonkich Motion in Parallel Bars (평행봉 Tichonkich 동작의 운동학적 분석)

  • Park, Jong-Hoon;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.21-30
    • /
    • 2005
  • The purpose of this study is helps to make full use for perfect performance by grasping the defects of Tichonkich motion performed by athlete CSM For this, the study analyzed kinematical variables through Tichonkich motions performed at the first selection competition(1st trial) and final selection competition(2nd trial) for the dispatch to the 28th Athens Olympic Games using the three-dimensional cinematographical method with a high-speed video camera, and obtained the following results. 1. During Tichonkich motion, the execution time of up swing and the right hand moving to the left bar was shorter in the 2nd trial than the 1st one, while the execution time of down swing, the support of the left bar and the right hand moving to the right bar was longer in the 2nd trial than the 1st trial. 2. The horizontal position of COG in the 2nd trial was -35cm in the 1st stage, 42cm in the 3rd stage and 29cm in the 4th stage, that is, it showed a great swing focused on the circular movement compared to the 1st trial, while the vertical position of COG was -59cm in the 2nd stage, that is, it showed a small swing focused on a up and down movement. Also the 5th stage vertical position was 98cm, and the 6th stage vertical position was 95cm in the 2nd trial which were higher than those of the 1st trial, so it has provided magnificence required in the modern gymnastics. 3. And it was indicated that the horizontal velocity at the down swing phase proceeded forward more rapidly in the 2nd trial than that in the 1st trial, and the reverse ascent made a rapid vertical rise lessening left and right velocity change. And in the 5th stage, the 2nd trial was kept very slower in horizontal, vertical and left and right velocity that in the 1st trial, so it reached a handstand with leisurely movement. 4. In the 2nd trial, shoulder joint of the 1st, 2nd, 3rd stages kept a larger angle than that in the 1st trial, that is, it made a great swing while in the 1st trial, it showed a swing movement dependent on kick movement by the flexion and extension of hip joint. Also in the 2nd trial, the body formed a vertical posture with both hands supporting the left bar and hip joint was kept larger as $198^{\circ}$ and $190^{\circ}$ in the 5th and 6th stage than that in the 1st trial, so it made a handstand with the body uprightly stretched out, and magnificent and stable movement.

A three-dimensional kinematic analysis of the field goal kicking motion in American football (미식축구의 필드골(Field Goal) 킥(Kick)에 대한 운동학적 분석)

  • Ahn, Chan-Gyu;Kim, Ky-Hyung;Choi, Seung-Bang
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.139-153
    • /
    • 2003
  • The purpose of the study was to present technical guidance about the field goal kicking motion in American football for novices. For this purpose, kinematic analysis on the field goal kicking motion of two skilled players and two unskilled players was carried out. The following conclusions were made: 1. In comparison on the total elapsed time of the kicking, there were no significant differences between two groups. The progressing time from BP event to impact among experts group, however, took 0.141 second less than that of novices group. 2. The experts group showed right hip rotatier horizontally toward the targeted ball fixing left hip as the axis. On the other hand, the novices group didn't use the left hip as the axis in the kicking motion. 3. At the impact of kicking the ball, regarding with the distance of the ball and the supporting leg, the right and left distance of experts was 3.45cm longer than that of novices, the front and the rear distance of experts was 5.14cm shorter than novices. 4. At the impact, experts' initial velocity of the targeted ball was $5.27^m/s$ faster than novices', besides experts' incidence angular displacement was $3.78^{\circ}$ larger than novices'. 5. After BP event, experts showed a stable movement maintaining flexion and extension at left hip joint and knee joint. On the other hand, for novices, the angle of the left lower extremities became larger. 6. Experts showed the efficient flexion and extension of the hip joint and the knee joint during following procedure in the whole event of the kicking motion. At the BP event, the right knee joint angle of novices was $11.46^{\circ}$ larger than that of experts. However, the duration of the impact event and FT event among, novices had less extension of knee joint than experts. 7. At the 2nd phase, for both of the groups, the angular velocity of the knee joint drastically increased as the angular velocity of hip joint decreased. However, only novices showed the largest negative angular velocity at the impact.

A kinematic analysis of the attacking-arm-kuzushi motion as to pattern of morote-seoinage in judo (유도 양팔업어치기 패턴에 따른 공격팔 기울이기 동작의 운동학적 분석)

  • Kim, Eui-Hwan;Yoon, Hyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.73-94
    • /
    • 2003
  • The purpose of this investigation was to analyze A kinematic analysis of the Kuzushi-arm motion when performing Morote-Seoinage in judo who was 5 females university representative judokas of light weight category in judo, and filmed on video cameras(60field/s). The data of this study digitizied by KWON3D 2.1 program computed the average and standard deviation calculated individual 5 trials with Programing Lab view 6i. From the data analysis & discussion, the following conclusions were drawn : 1) distance variable of attacking hand arm in kuzushi motion Left right(X direction) displacement variable was all of A, B, C pattern with moving left to right and leaning. Strip of displacement variable was ordo. to C(55.6cm), A(53.3cm), B(43.9cm) pattern, C pattern largely leaned to left Front Rear(Y direction) displacement variable was different A($131.3cm{\pm}3.1cm$), B($128.7{\pm}4.0cm$) and C(111.0cm) on ready position, 3 pattern leaned to rear direction. Strip of displacement was order to B(43.4cm), A(41.1cm) and C pattern(28.3cm). Up down(Z direction) displacement variable was all of A, B, C pattern leaned to up in the Kuzushi-phase and leaned to down in the Kake-phase. Strip of displacement was order to A(83.9cm), B(80.4cm), C pattern(71.9cm). 2) Shoulder joint angle variable Flexion and extension Ready position' angle was A($138.3{\pm}4.9^{\circ}$), B($142.9{\pm}3.7^{\circ}$) and C($164.5^{\circ}$) pattern, strip of flexion extension was order to C($80.9^{\circ}$), A($79.9^{\circ}$) and B($39.0^{\circ}$) pattern, greatly C pattern had largely angle change. Adduction and abduction : B and C pattern's angle change were adduction and abduction in the Kuzushi-phase after adduction in the Kake phase, A pattern's angle change was abduction in the Kuzushi-phase after adduction in the Kake phase. internal and external rotation : 3 pattern were internal rotation in the Tsukuri phase and external rotation in the Kake phase. After B and C pattern were external rotation and A pattern was internal rotation. 3) Elbow joint angle variable Flexion and extension 3 pattern's ready position angle were A($142.0{\pm}4.4^{\circ}$), B($123.5{\pm}5.5^{\circ}$) and C($105.5^{\circ}$) and flexion. Strip of flexion extension were order to A($57.9^{\circ}$), C($34.6^{\circ}$) and B($25.2^{\circ}$) pattern.

Evaluation of Insole-equipped Ankle Foot Or thosis for Effect on Gait based on Biomechanical Analysis (인솔 장착형 단하지 보조기의 생체 역학적 분석을 통한 보행 영향성 평가)

  • Jung, Ji-Yong;Kim, Jin-Ho;Kim, Kyung;Trieu, Pham Hai;Won, Yong-Gwan;Kwon, Dae-Kyu;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of insole-equipped ankle-foot-orthoses (AFO) on gait. 10 healthy males who had no history of injury in the lower extremity participated in this study as the subjects. The foot of each subject was first scanned, and the insole fit to the plantar was made using BDI-PCO(Pedcad Gmbh, Germany). The subject then was made to walk on a treadmill under four experimental conditions: 1) normal walking, 2) walking wearing AFO, 3) walking wearing AFO equipped with the insole, 4) walking wearing pneumatic-ankle-foot-orthosis (pAFO) equipped with the insole. During walking, foot pressure data such as maximum force, contacting area, peak pressure, and mean pressure was collected using Pedar-X system (Novel Gmbh, Germany) and EMG activity of lower limb muscles such as gastrocnemius medial head, gastrocnemius lateral head, and soleus was recorded using MP150 EMG module (BIOPAC System Inc., USA). Collected data was then analyzed using paired t-test in order to investigate the effects of the insole. As a result of the analysis, when insole was equipped, overall contacting area was increased while both the highest peak pressure and the mean pressure were significantly decreased, and EMG activity of the lower limb muscles was decreased. On the contrary, the cases of wearing AFO showed the decreased contacting area and the increased pressures. Therefore, the AFO equipped with a proper insole fit well to the foot can help comfortable walking by spreading the pressure over the entire plantar.

Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling (단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템)

  • Lee, Joo-Hack;Kang, Dong-Won;Bae, Jae-Hyuk;Shin, Yoon-Ho;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.

Investigation of the Ground Reaction Force Parameters According to the Shoe's heel Heights and Landing Distance during Downward Stairs on Bus (버스계단 내리기 시 구두 힐 높이와 착지거리에 따른 지면반력 파라미터 조사)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • The purpose of this study was to investigate the GRF(ground reaction force) parameters according to the shoes's heel heights and ground landing distances during downward stairs on bus. Participants selected as subject were consisted of young and healthy women(n=9, mean age: $21.30{\pm}0.48$ yrs, mean height: $164.00{\pm}3.05cm$, mean body mass: $55.04{\pm}4.41kg$, mean BMI: $20.47{\pm}1.76kg/m^2$, mean foot length: $238.00{\pm}5.37mm$). They were divided into 2-types of shoe's heel heights(0 cm/bare foot, 9 cm) and also were divides into downward stairs with 3 types of landing distance(20 cm, 35 cm, 50 cm). A one force-plate was used to collect the GRF(AMTI, USA) data from the sampling rate of 1000 Hz. The GRF parameters analyzed were consisted of the medial-lateral GRF, anterior-posterior GRF, vertical GRF, loading rate, Center of Pressure(${\Delta}COPx$, ${\Delta}COPy$, COP area) and Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) during downward stairs on bus. Medial-lateral GRF and vertical GRF didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 9 cm shoes heel showed higher vertical GRF than that of 0 cm bare foot in landing distance of 50 cm. Also anterior-posterior GRF didn't show significant difference statistically according to the shoe's heel heights, but landing distance of 20 cm showed higher than that of landing distances of 35 cm and 50 cm in anterior-posterior GRF. Loading rate didn't show significant difference statistically according to the landing distance, but 9 cm shoe's heel showed higher than that of 0 cm bare foot during downward stairs. The ${\Delta}COPy$ and COP area didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 0 cm bare foot showed higher than that of 9 cm shoe's heel in ${\Delta}COPx$. Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) didn't show significant differences statistically according to the landing distance, but 9 cm shoe's heel showed decreased value than that of 0 cm bare foot in dynamics balance. Considering the above, parameters of GRF showed different characteristics according to the shoe's heel heights and ground landing distances during downward stairs on bus.