• 제목/요약/키워드: Splitting failure

검색결과 149건 처리시간 0.021초

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • 제13권2호
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

A large scale simulation of floe-ice fractures and validation against full-scale scenario

  • Lu, Wenjun;Heyn, Hans-Martin;Lubbad, Raed;Loset, Sveinung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.393-402
    • /
    • 2018
  • While interacting with a sloping structure, an ice floe may fracture in different patterns. For example, it can be local bending failure or global splitting failure depending on the contact properties, geometry and confinement of the ice floe. Modelling these different fracture patterns as a natural outcome of numerical simulations is rather challenging. This is mainly because the effects of crack propagation, crack branching, multi fracturing modes and eventual fragmentation within a solid material are still questions to be answered by the on-going research in the Computational Mechanic community. In order to simulate the fracturing of ice floes with arbitrary geometries and confinement; and also to simulate the fracturing events at such a large scale yet with sufficient efficiency, we propose a semi-analytical/empirical and semi-numerical approach; but with focus on the global splitting failure mode in this paper. The simulation method is validated against data we collected during the Oden Arctic Technology Research Cruise 2015 (OATRC2015). The data include: 1) camera images based on which we specify the exact geometry of ice floes before and after an impact and fracturing event; 2) IMU data based on which the global dynamic force encountered by the icebreaker is extracted for the impact event. It was found that this method presents reasonably accurate results and realistic fracturing patterns upon given ice floes.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

고강도 콘크리트의 부착할렬기구에 관한 실험적 연구 (An Experimental Study on the Bond Split Mechanism of High Strength Concrete)

  • 장일영
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

원형 자유면을 이용한 암반 파쇄의 수치해석적 연구 (Numerical study on rock splitting using the cylindrical cavity)

  • 안성권
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.1013-1028
    • /
    • 2017
  • 본 논문은 원형 자유면을 이용한 암반 파쇄에 대한 수치해석적 연구이다. 암반 파쇄시 균열 발생에 대한 메커니즘을 알아보기 위하여 수치해석을 통해 응력 및 변형율 경로를 분석하였다. 수치해석 결과로부터 균열선의 주응력 분석으로 최대 주응력을 산출하여 취성 재료의 파괴와 균열 진전에 대하여 분석 규명하였다. 또한 본 연구결과를 통하여 암반파쇄시 균열 진전 방향이 전환되는 거동 메커니즘을 제시하였다.

Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials

  • Yin, Da W.;Chen, Shao J.;Sun, Xi Z.;Jiang, Ning
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.81-89
    • /
    • 2021
  • Uniaxial compression tests were conducted on sandstone-CGFB composite samples with different interface angles, and their strength, acoustic emission (AE), and failure characteristics were investigated. Three macro-failure patterns were identified: the splitting failure accompanied by local spalling failure in CGFB (Type-I), the mixed failure with small sliding failure along with the interface and Type-I failure (Type-II), and the sliding failure along with the interface (Type-III). With an increase of interface angle β measured horizontally, the macro-failure pattern changed from Type-I to Type-II, and then to Type-III, and the uniaxial compressive strength and elastic modulus generally decreased. Due to the small sliding failure along with the interface in the composite sample with β of 45°, AE events underwent fluctuations in peak values at the later post-peak failure stage. The composite samples with β of 60° occurred Type-III failure before the completion of initial compaction stage, and the post-peak stress-time curve initially exhibited a slow decrease, followed by a steep linear drop with peaks in AE events.

단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가 (Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor)

  • 김문길;천성철;김영호;심혜정;배민서
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.463-471
    • /
    • 2016
  • 이 연구에서는 롯드 앵커에 강재 링을 추가한 고전단 링앵커의 전단실험을 바탕으로 강도평가 모델을 개발하였다. 고전단 링앵커의 전단강도는 콘크리트 압축강도의 3/4 제곱에 비례하여, 강-콘크리트 합성구조에 사용되는 전단연결재와 유사한 강도 특성을 발현하였다. 콘크리트 압축강도, 측면연단거리, 롯드 묻힘깊이를 고려한 단일 고전단 링앵커 전단강도 평가 모델을 개발하였다. 22개 실험결과와 비교한 결과 [실험값]/[예측값]의 평균이 1.01 변동계수 7.57%로 나타났다. 한면에 4개씩 총 8개의 고전단 링앵커에 대한 Push 실험을 수행하고, 개발된 전단강도 모델과 비교하였다. 다수의 고전단 링앵커 Push 실험 결과, 단일 고전단 링앵커와 유사하게 측면 연단거리 100 mm에서는 쪼갬파괴가 발생되고, 측면 연단거리 150 mm에서는 쪼갬파괴와 지압파괴가 혼합되어 발생하였다. 쪼갬 파괴가 발생된 경우, 가력방향으로 고전단 링앵커 간격이 측면 연단거리의 4배인 400 mm이면 파괴면이 독립적으로 발생되어, 앵커 사이 간섭이 발생되지 않았다. 지압 파괴가 발생된 경우, 지압파괴의 영향 길이가 150 mm 미만으로 가력방향으로 고전단 링앵커의 간격이 200 mm를 확보하면 앵커 사이 상호 간섭이 발생되지 않았다. 다수 고전단 링앵커 Push실험에 의한 전단강도는 이 연구에서 개발된 예측강도의 평균 98%가 발현되었다. 개발된 전단강도 모델이 다수의 고전 단 링앵커의 전단강도 예측에도 활용될 수 있을 것으로 판단된다.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.