• Title/Summary/Keyword: Spline interpolation method

Search Result 164, Processing Time 0.022 seconds

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

Performance Improvement of Towed Array Shape Estimation Using Interpolation (보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.72-76
    • /
    • 2000
  • A calibration technique is proposed to improve the performance of 2-D towed array shape estimation using the Kalman filter. In the case of using displacement sensors, 2-D hydrophone positions estimated by the Kalman filter are calculated by assuming that the adjacent hydrophones are horizontally equi-spaced so that maximum distance is equal to the array length. The assumption causes errors in estimating hydrophone positions. The proposed technique using linear model approximation or spline interpolation can reduce the errors by exploiting the fact that the whole length of array is preserved whatever the array shape is. The numerical experiments show that the proposed method is very effective.

  • PDF

Automatic Prostate Segmentation from Ultrasound Images using Morphological Features (형태학적 특징을 이용한 초음파 영상에서의 자동 전립선 분할)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.865-871
    • /
    • 2022
  • In this paper, we propose a method of extracting prostate region using morphological characteristics of ultra-sonic image of prostate. In the first step of the proposed method, the edge area of the prostate image is extracted. The histogram of ultra-sonic image is used to extract base objects to detect the upper edge of prostate region by altering the contrast of the image, then, the lower edges of the extracted base objects are connected by using monotone cubic spline interpolation to extract the upper edge. Step 2, Otsu's binarization is applied to the region under the extracted upper edge of the prostate ultra-sonic image to extract the lower edge of prostate. In the last step, the upper and the lower edges are connected to extract prostate region and by comparing the extracted region of prostate with the one measured manually, the result showed that the morphological characteristics of prostate in ultrasonic image can be utilized to extract the prostate region.

Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method

  • Shahmohammadi, Mohammad Amin;Azhari, Mojtaba;Saadatpour, Mohammad Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.361-376
    • /
    • 2020
  • This paper presents a free vibration analysis of shell panels made of functionally graded material (FGM) in the form of the ordinary and sandwich FGM and laminated shells using the isogeometric B3-spline finite strip method (IG-SFSM). B3-spline and Lagrangian interpolation are employed along the longitudinal and transverse directions respectively in this type of finite strip. The introduced finite strip formulation is based on the degenerated shell method, which provides variable thickness, arbitrary geometries, and analysis of thin or thick shells. Validity of the obtained natural frequencies by IG-SFSM is checked by comparison with results extracted from references for similar cases in different examples. These examples incorporate several geometries, materials, boundary conditions, and continuous thickness variation. A comparison of these two kinds of results and their proximity showed that the introduced IG-SFSM is a reliable tool which can be used in analysis of shells with the aforementioned properties.

Extraction of the control data for the shoe laster by using tension spline method and verification of the geometric grading system (Tension spline 방법을 이용한 제화용 라스팅기의 제어데이터 추출 및 기하할출제도의 검증)

  • Jang, Kwang-Keol;Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.140-145
    • /
    • 2001
  • Lasting machines for shoe manufacturing are continuously developed with the aid of automation and Computer Aided Manufacturing (CAM). Adaptive lasting machine and CAD data of a shoe last are inevitably introduced for the labor-free manufacturing process. Recently, method for the CAD datarization of a shoe last is suggested using finite element mesh system. Initial set up data and control data of machine parts are required for the adaptive lasting machine. For the efficient process, grading of those data is essential to minimize data storage and production costs. In this paper, bonding lines are extracted from the CAD data of a shoe last and graded by the geometric grading system. Tension spline method is adopted for the interpolation of last CAD data. The results are compared with the results from the arithmetic grading system that is widely adopted in the shoemaking companies.

  • PDF

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling (하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리)

  • Park, Jong-Hyun;Kang, Moon-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.

Pulse Diagnosis Algorithm and Digital Filter Design for Development of Digital Biomedical System (전자 맥진기 시스템 개발을 위한 맥파분석 알고리즘과 디지털 필터 설계)

  • Kim, Sang-Ho;Lim, Duk-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4473-4482
    • /
    • 2010
  • The examination of pulse, which is a typical palpation technique in the oriental medicine, has been used conventional analog system for discrimination of 28 pulses. However, the clipping phenomenon in the pulses, which used same feature extraction technique with ECG signals, has been occurred in analog system due to feature extraction method and over amplification from the input signals. It caused inaccurate to analyze the pulse signals. In this paper, we propose a digital filter design technique based on Prony's method for signal modeling and C-spline interpolation for feature extraction from pulse signal to compensate analog pulse detection system. In addition, we suggest a compensated electronic pulse detection system comprising new pulse analyzing algorithm and shape analysis technique for pulses, which were difficult to use in analog system. The feasibility for new proposed system has been confirmed comparing output signals between electronic pulse detection system having proposed filter design techniques with pulse analyzing algorithm and conventional analog system.

Salt and Pepper Noise Removal using 2-Dimensional Spline Interpolation (2차원 스플라인 보간법을 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1167-1173
    • /
    • 2017
  • As the society increasingly embraces the high - tech digital information age, the field of image processing becomes progressively more branched out and becoming an imperative field. However, image data is deteriorated due to various causes during transmission and salt and pepper noise is typical. Typical methods for removing salt and pepper noise include CWMF, SWMF, and A-TMF. However, existing methods are somewhat insufficient in their ability to remove noise in salt and pepper noise environments. Therefore, in this paper, after it is determined whether noise removal is needed, the following measures were taken. If the center pixel was non-noise, the original pixel was preserved, If it was noise, we proposed a two - dimensional spline interpolation method and a median filter depending on the noise density of the local mask. For the purpose of objective judgment, we compared the results with that of existing methods and used PSNR (peak signal to noise ratio) as a judgment criterion.