• Title/Summary/Keyword: Spline interpolation method

Search Result 163, Processing Time 0.025 seconds

Measuring Angular Speed and Angular Acceleration for Automotive Windshield Wiper Pivot (자동차 와이퍼 피봇의 각속도 및 각가속도 측정)

  • Lee Byoungsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.58-65
    • /
    • 2005
  • A method measuring angular speed and estimating angular acceleration of an automotive wind shield wiper pivot with limited resources has been proposed. Limited resources refer to the fact that processes cannot be operated in real-time with a regular notebook running a Microsoft Windows. Also, they refer to the fact that data acquisition cards have only two general purpose counters as many generic cards do. An optical incremental encoder has been employed for measuring angular motion. To measure the angular speed of the pivot, periods for the encoder's output pulses have been measured as the speed is related to the reciprocal of the period. Since only information acquired from one counter channel is the magnitude of the angular speed, sign correction is necessary. Also the information for the exact time when a pivot passes left and right dead points is also missing and the situation is inherent to the hardware setup. To find out the zero-crossing time of the angular speed, a linear interpolation technique has been employed. Lastly, to overcome the imperfection of the mechanical encoders, the angular speed has been curve fitted to a spline. Angular acceleration can be obtained by a differentiation of the angular speed.

Investigation Into Reflectance Characteristics of Trees Infected by Pine Wilt Disease (소나무재선충병 감염목의 분광반사 특성 구명)

  • Kim, So-Ra;Lee, Woo-Kyun;Nam, Kijun;Song, Yongho;Yu, Hangnan;Kim, Moon-Il;Lee, Jong-Yeol;Lee, Seung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.499-505
    • /
    • 2013
  • Pine wilt disease has known as a serious forest disease in East Asia such as Japan, Korea and China. Fumigation and burning are considered as best way to treat infected tree at early detection. For investigate spectral reflectance characteristics of infected trees, periodic measurement has been done in both infected and non-infected trees. Infected and non-infected trees' reflectance (400 nm~2,500 nm wavelength) are detected from June to October with GER3700 spectrometer. Noise of reflectance data was corrected using cubic spline interpolation method. Reflectance was changed in most of infected trees with ranges Red (600 nm~700 nm) and Middle Infrared (1,400 nm~1,500 nm) within two months after injected by Pine Wood nematode (PWN), but there was no differences in non-infected trees. Infected and non-infected trees were compared statistically in each period. As a result, we found that a statistically significant difference was occurred at Red and Middle Infrared (MIR) 2 months after injection (p<0.05), however, no significant difference in near infrared (p>0.05). Therefore, the early detection of infested pine trees by PWN may possible through detecting the change of spectral reflectance at red and MIR.

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Real Time ECG Derived Respiratory Extraction from Heart Rate for Single Lead ECG Measurement using Conductive Textile Electrode (전도성 직물을 이용한 단일 리드 심전도 측정 및 실시간 심전도 유도 호흡 추출 방법에 관한 연구)

  • Yi, Kye-Hyoung;Park, Sung-Bin;Yoon, Hyoung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.335-343
    • /
    • 2006
  • We have designed the system that measure one channel ECG by two electrode and extract real-time EDR with more related resipiration and comportable to subject by using conductive textile. On the assumption that relation between RL electrode and potential measurement electrode is coupled with RC connected model, we designed RL drive output to feedback two electrode for reduction of common mode signal. The conductive textile which was used for two ECG electrode was offered more comfort during night sleep in bed than any other method using attachments. In the method of single-lead EDR, R wave point or QRS interval area could be used for EDR estimation in traditional method, it is, so to speak, the amplitude modulation(AM) method for EDR. Alternatively, R-R interval could be used for frequency modulation(FM) method based on Respiratory Sinus Arrhythmia(RSA). For evaluation of performance on AM EDR and FM EDR from 14 subject, ECG lead III was measured. Each EDR was compared with both temperature around nose(direct measurement of respiration) and respiration signal from thoracic belt(indirect measurement of respiration) on mean squared error(MSE), cross correlation(Xcorr), and Coherence. The upsampling interpolation technique of multirate signal processing is applied to interpolating data instead of cubic spline interpolation. As a result, we showed the real-time EDR extraction processing to be implemented at micro-controller.

Super Resolution based on Reconstruction Algorithm Using Wavelet basis (웨이브렛 기저를 이용한 초해상도 기반 복원 알고리즘)

  • Baek, Young-Hyun;Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • In most electronic imaging applications, image with high resolution(HR) are desired. HR means that pixel density within an image is high, and therefore HR image can offer more details that may be critical in various applications. Digital images that are captured by CCD and CMOS cameras usually have a very low resolution, which significantly limits the performance of image recognition systems. Image super-resolution techniques can be applied to overcome the limits of these imaging systems. Super-resolution techniques have been proposed to increase the resolution by combining information from multiple images. To techniques were consisted of the registration algorithm for estimation and shift, the nearest neighbor interpolation using weight of acquired frames and presented frames. In this paper, it is proposed the image interpolation techniques using the wavelet base function. This is applied to embody a correct edge image and natural image when expend part of the still image by applying the wavelet base function coefficient to the conventional Super-Resolution interpolation method. And the proposal algorithm in this paper is confirmed to improve the image applying the nearest neighbor interpolation algorithm, bilinear interpolation algorithm.,bicubic interpolation algorithm through the computer simulation.

Estimation of Structural Deformed Shapes Using Limited Number of Displacement Measurements (한정된 계측 변위를 이용한 구조물 변형 형상 추정)

  • Choi, Junho;Kim, Seungjun;Han, Seungryong;Kang, Youngjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1295-1302
    • /
    • 2013
  • The structural deformed shape is important information to structural analysis. If the sufficient measuring points are secured at the structural monitoring system, reasonable and accurate structural deformation shapes can be obtained and structural analysis is possible using this deformation. However, the accurate estimation of the global structural shapes might be difficult if sufficient measuring points are not secure under cost limitations. In this study, SFSM-LS algorithm, the economic and effective estimation method for the structural deformation shapes with limited displacement measuring points is developed and suggested. In the suggested method, the global structural deformation shape is determined by the superposition of the pre-investigated structural deformed shapes obtained by preliminary FE analyses, with their optimum weight factors which lead minimization of the estimate errors. 2-span continuous bridge model is used to verify developed algorithm and parametric studies are performed. By the parametric studies, the characteristics of the estimation results obtained by the suggested method were investigated considering essential parameters such as pre-investigated structural shapes, locations and numbers of displacement measuring points. By quantitative comparison of estimation results with the conventional methods such as polynomial, Lagrange and spline interpolation, the applicability and accuracy of the suggested method was validated.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.

Real-Time Tool-Path Generation for 3-Axis CNC Machining of NURBS Surfaces (NURBS 곡면의 3축 CNC 가공을 위한 실시간 공구경로 생성)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1418-1425
    • /
    • 2003
  • In CAD systems, a surface to be machined is expressed by a series of curves, such as B-spline, Bezier and NURBS curves, which compose the surface and then in CAM systems the curves are divided into a large number of line or arc segments. These divided movement commands, however, cause many problems including their excessive size of NC data that makes almost impossible local adjustment or modification of the surface. To cope with those problems, the necessity of real-time curve or surface interpolators was embossed. This paper presents an efficient real-time tool-path generation method fur interpolation of NURBS surfaces in CNC machining. The proposed tool-path generation method is based on an improved iso-scallop strategy and can provide better precision than the existing methods. The proposed method is designed such that tool-path planning is easily managed in real-time. It proposed a new algorithm for regulation of a scallop height, which can efficiently generate tool-paths and can save machining time compared with the existing method. Through computer simulations, the performance of the proposed method is analyzed and compared with the existing method in terms of federate, total machining time and a degree of constraint on the scallop height.

Effect of viscous damping force subjected to a rotating flexible disk (점성감쇠력이 회전탄성원판에 미치는 영향)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.185-190
    • /
    • 2001
  • Rotating disks are used in various machines such as floppy disks, hard disk, turbines and circular sawblades. The problems of vibrations of rotating disks are important in improving these machines. Many investigators have dealt with these problem. Specially, vibrations of a rotating flexible disk taking into account the effect of air is difficult problem in simulation. The governing equation of a rotating flexible disk coupled to the surrounding fluid is investigated by a simple mathematical model. And several important parameters concerned with the stability of a rotating flexible disk are defined. Coupling strength between air and rotating flexible disk is proportional to square of disk radius directly and square root of the all of bending rigidity, disk density and thickness inversely. Lift-to-damping coefficient has relation to the onset of disk flutter.

  • PDF

Development of a reduced-order distillation model and real-time tuning using the extended kalmen filter (증류공정 차수감소 모델의 개발 extended kalmen filter에 의한 실시간대에서의 조정)

  • 정재익;최상열;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.466-470
    • /
    • 1988
  • A tunable reduced-order distillation model is proposed for real-time applications. To develop the model, a binary distillation column with MaCabe-Thiele assumptions was considered first and then the governing equations for the column were reduced to a simplified vector differential equations using the collocation method combined with cubic spline interpolation function. The final reduced-order model has four tuning parameters, relative volatilities and liquid holdups for rectifying and stripping sections, respectively. To assess the applicability of the developed model,the real-time adjustment of the model was tried by recursively updating the tuning parameters using the BKF algorithm. As a result, it was found that the reduced-model follows the simulated distillation process very closely as the parameters are improved.

  • PDF