• Title/Summary/Keyword: Spline interpolation

Search Result 272, Processing Time 0.021 seconds

Respiratory Effort Monitoring Using Pulse Transit Time in Human (인체에서 맥파전달시간을 이용한 호흡노력 모니터링)

  • 정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.485-489
    • /
    • 2002
  • In this study. respiratory efforts were monitored by the change of pulse transit time (PTT) which is related with the arterial pressure PTT is the time interval between the peak of R wave in ECG and the maximal slope point of photoplethysmogram(PPG). Biosignals, ECG and finger photoplethysmogram(PPG), were converted to digital data, and PTT was evaluated in personal computer with every heart beat. Results were presented as a graph using spline interpolation. The software was implemented in C$\^$++/ as a window-based application program. PTT was periodically changed according to airflow in resting respiration. In the resting respiration, PTT was changed according to the respiratory cycle. The amplitude of PTT fluctuation was increased by deep respiration, and increased by partial airway obstruction. These results suggest that PTT is responsible to respiratory effort which could be evaluated by the pattern of PTT change. And it is expected that PTT could be applied in the monitoring of respiratory effort by noninvasive methods, and is very useful method for the evaluation of respiratory distress.

Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface (서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석)

  • 김형길;서홍석;조맹효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

A Study on the Construction of a Real-time Sign-language Communication System between Korean and Japanese Using 3D Model on the Internet (인터넷상에 3차원 모델을 이용한 한-일간 실시간 수화 통신 시스템의 구축을 위한 기초적인 검토)

  • Kim, Sang-Woon;Oh, Ji-Young;Aoki, Yoshinao
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.71-80
    • /
    • 1999
  • Sign-language communication can be a useful way of exchanging message between people who using different languages. In this paper, we report an experimental survey on the construction of a Korean-Japanese sign-language communication system using 3D model. For real-time communication, we introduced an intelligent communication method and built the system as a client-server architecture on the Internet. A character model is stored previously in the clients and a series of animation parameters are sent instead of real image data. The input-sentence is converted into a series of parameters of Korean sign language or Japanese sign language at server. The parameters are transmitted to clients and used for generating the animation. We also employ the emotional expressions, variable frames allocation method, and a cubic spline interpolation for the purpose of enhancing the reality of animation. The proposed system is implemented with Visual $C^{++}$ and Open Inventor library on Windows platform. Experimental results show a possibility that the system could be used as a non-verbal communication means beyond the linguistic barrier.

  • PDF

Automatic Segmentation of the Prostate in MR Images using Image Intensity and Gradient Information (영상의 밝기값과 기울기 정보를 이용한 MR영상에서 전립선 자동분할)

  • Jang, Yj-Jin;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.695-699
    • /
    • 2009
  • In this paper, we propose an automatic prostate segmentation technique using image intensity and gradient information. Our method is composed of four steps. First, rays at regular intervals are generated. To minimize the effect of noise, the start and end positions of the ray are calculated. Second, the profiles on each ray are sorted based on the gradient. And priorities are applied to the sorted gradient in the profile. Third, boundary points are extracted by using gradient priority and intensity distribution. Finally, to reduce the error, the extracted boundary points are corrected by using B-spline interpolation. For accuracy evaluation, the average distance differences and overlapping region ratio between results of manual and automatic segmentations are calculated. As the experimental results, the average distance difference error and standard deviation were 1.09mm $\pm0.20mm$. And the overlapping region ratio was 92%.

Determination of the Optimal Spatial Interpolation Methods for Estimating Missing Precipitation Data in Not Covered Area by Climate Change Scenario (기후변화시나리오 데이터 누락지역의 강수자료 보완을 위한 최적 공간보간기법 선정)

  • Jang, Dong Woo;Park, Hyo Seon;Choi, Jin Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.14-14
    • /
    • 2015
  • 공간보간기법은 미계측지역의 강수예측을 위해 통상적으로 사용되는 방법 중의 하나이다. 이 연구에서는 기상청에서 제공하고 있는 RCP 8.5 시나리오에 의한 남한상세 강수자료 중 지형이 복잡한 도서지역에서 제공되지 않는 데이터 누락격자에 대하여 최적의 공간보간기법을 선정하여 강수자료를 생성할 수 있도록 하였다. 적합한 보간기법을 선정하기 위해 데이터 누락지역에 대한 분석을 수행하였고, 최신 행정구역도에 맞추어 $1km{\times}1km$ 격자를 한반도 전체지역에 맞추어 생성된 격자를 사용하였다. ESRI사의 ArcGIS 프로그램을 이용하여 공간보간기법을 적용하였다. 사용된 보간법은 역거리가중치법(IDW), 정규크리깅(Ordinary Kriging), 보편크리깅(Universal Kriging), 스플라인(Spline)이며 가장 적합한 공간보간기법을 선정하기 위해 기후변화시나리오에 의한 데이터 중 해안선 주변 특정격자에서의 값을 누락시켜 공간보간기법을 통해 생성된 값과 기후변화 시나리오에 의한 값을 정량적으로 비교하였다. 공간보간기법의 적합도 평가를 위해 MAE(Mean Absolute Error), MSE(Mean Squared Error), PBIAS(Percent of BIAS), G(goodness of prediction) 분석을 수행하였고, 산점도 분석을 통해 실제값과 보간값의 오차율 평가를 병행하여 최적 공간보간기법을 결정하였다. 사용된 강수데이터는 RCP 8.5 시나리오에서 2015~2019년 중 강수가 높게 나타난 8월 자료를 이용하였다. 해안선 지역의 강수량 추정시 역거리 가중치법과 크리깅방법은 일부 지점에서 과다 추정되는 경향이 있고, 스플라인 방법이 전체적인 총 강수량이 기후변화시나리오에 의한 실제값과 유사한 것으로 나타났다. 실제값과 보간값의 교차검증을 수행한 결과 정규크리깅 기법이 가장 높은 정확도를 보였으며, 전체적으로 실제값과 유사한 범위내의 강수량이 생성되는 것으로 나타났다.

  • PDF

Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images (심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출)

  • Lee, Min-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, we propose an automatic segmentation method of the endo- and epicardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was $0.56{\pm}0.24mm$. The overlapping region ratio was $82{\pm}4.2%$ on average. In all experimental datasets, the whole process of our method was finished within 1 second.

Implementation on the Urine Analysis System using Color Correction and Chromaticity Coordinates Transform Methods (색 보정 및 색 좌표 변환 기법을 이용한 요분석 시스템의 구현)

  • 김기련;예수영;손정만;김철한;정도운;이승진;장용훈;전계록
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 2003
  • A transformation methode of the chromaticity coordinates was proposed to calibrate the measured data obtained by a urine analysis system which implemented in our previous study. Generally. the reacted color of a reagent strip by urine analysis system often exhibit the color distortions due to nonlinear characteristics of the various devices that is the optic module mechanism. hardware, and surround circumstance. A color correction method for minimizing the color distortion play a few role in maintaining high accuracy and reproduction of the urine analysis system. In this work, we used the compensation method such as the shading correction, the characteristic curve extraction of RGB color by means of third order spline interpolation, and linear transformation using a reference color. In addition, 1931 CIE XYZ color space was used to compensate the color of the measured data by a standard reference system as colorimeter. A compensation matrix was obtained so that the output values of the urine analysis system is nearly equal to that of a standard reference system for identical color sample. Color correction obtained by a urine analysis system which implemented in our previous study exhibited a good color accuracy when it was compared with the reference data. Observed result from an experiments on ten items or a urinalysis strip that color difference or between two urine analysis system was 1.28.

Development of Meta Model of Transfer Function for Wavemaker of Deep Ocean Engineering Basin (심해공학수조 조파기 전달함수 근사 모델 개발)

  • Seunghoon, Oh;Eun-Soo, Kim;Sungjun, Jung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.471-482
    • /
    • 2022
  • This study aims to investigate the characteristics of wave generation in a deep ocean engineering basin and to develop a meta-model of the transfer function of the wavemaker that reflects the geometric characteristics of the deep ocean engineering basin. To this end, the two-dimensional frequency domain boundary element method was applied to achieve an efficient analysis that reflects the geometric characteristics of the deep ocean engineering basin. The developed numerical method was validated through comparison with the analytical solution. Numerical analyses were conducted for the boundary value problem of the wavemaker according to various periods and the positions of the movable bottom. The numerical results were used to investigate the effect of the geometric characteristics of the deep ocean engineering basin on the transfer function of the wavemaker, and the effect of depth on wave generation was checked by changing the position of the movable bottom. To efficiently utilize the various results of the boundary element method, a meta-model, an approximate model of the transfer function of the wave maker, was developed using a thin plate spline interpolation model. The validity of the developed meta-model was confirmed through a comparison of the results of the model tests.

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.