• Title/Summary/Keyword: Spiral Wound Module

Search Result 18, Processing Time 0.025 seconds

The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by different pretreatment processes (아크릴 폐수의 전처리공정에 따른 UF(tubular)/RO(spiral wound) 공정의 성능변화)

  • Lee, Kwang-Hyun;Han, Sung-Bum;Choi, Dae-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2002
  • The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes were discussed wit the variation of appled pressure and temperature. Ultrafiltration tubular module using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes was shown that COD and T-N were not highly affected with the variation of appled pressure and temperature. It was shown that removal efficiency of COD and T-N was low. Removal efficiency of TDS and turbidity with ultrafiltration tubular module was better with the acrylic wastewater by photo-catalyst pretreatment than acrylic wastewater by coagulant-filter-neutralization pretreatment. T-N and TDS were shown high removal efficiency in reverse osmosis membrane process.

Effect of pH in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리 공정에서 pH의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.358-366
    • /
    • 2015
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. After that, spiral wound module was manufactured with it including a woven paper. Effect of pH was studied by comparing permeate fluxes and rejection rates of the spiral wound module using simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing at the end of filtration experiment. In addition, after the water filtrated by the spiral wound module was passed through a column filled with GAC (granular activated carbon), adsorption effect of GAC was investigated by measuring the turbidity and $UV_{254}$ absorbance.

Effect of Operating Conditions and Recovery of Water Back-washing in Spiral Wound Microfiltration Module Manufactured with PVDF Nanofibers for Water Treatment (수처리용 PVDF 나노섬유 나권형 정밀여과 모듈에서 운전조건의 영향과 물 역세척 회복)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.180-190
    • /
    • 2015
  • PVDF (polyvinylidene fluoride) nanofiber has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. Flat membranes with 0.3 and $0.4{\mu}m$ pore size respectively, were manufactured by PVDF nanofiber, and then each spiral wound module was prepared with them. A woven paper was not included in preparing the module with $0.3{\mu}m$ pore size; however, it was included the module with $0.4{\mu}m$ pore size. The permeate fluxes and rejection rates of the two modules were compared using pure water and simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing. In addition, the effect of flow rate and trans-membrane pressure on treatment efficiency and filtration resistance were investigated for the spiral wound module with $0.4{\mu}m$ pore size.

Analysis of the Salt Separation and Concentration Using Counter-current Reverse Osmosis Spiral Wound Module (향류식 역삼투 나권형 모듈을 이용한 염분리농축 특성 해석)

  • 조한욱;민병렬;최광호
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Counter-current type reverse osmosis spiral wound module was manufactured for the separation and concentration of salf solution. The ratio of permeate volumetric flow rate vs. brine volumetric flow rate was effective parameter between rejection and degree of cocentration. The reflection coefficient was correspondent to the relation between rejection and degree of cocentration by Spiegler-Kedem model. Counter-current reverse osmosis process had more osmotic pressure drop effect and more degree of concentration than general reverse osmosis process. As a result of computer calculation, the extension of module length than module diameter was more effective for the increase of degree of concentration.

  • PDF

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System (압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구)

  • Hong, Sung Soo;Ryoo, Won;Chun, Myung-Suk;Chung, Gui Yung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

수처리용 분리막 모듈 설계 및 오염 방지

  • 정건용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.87-109
    • /
    • 1997
  • Reverse osmosis(R/O), ultrafiltration(UF) and microfiltration (MF) processes are widely used for water treatment. In the seminar, characteristics of typical membrane modules including tubular, hollow fiber, plate and frame and spiral wound types will be discussed in detail. The design methods based on hydrodynamics for hollow fiber and spiral wound modules will be introduced analytically. Concentration polarization (CP) and membrane fouling mechnism as well as the techniques for CP reduction will be handled. The CP control techniques contain chemically modified membrane surface, pretreatment of feed water, operation of low trans-membrane pressure, chemical or physical cleaning methods and artificial production of various fluid turbulences near the membrane surface, etc. In especially, the recent commercial membrane modules for CP control including module rotation, vibration and Taylor or Dean vortex system will be introduced and discussed in detail.

  • PDF

A Study of the Development of a Radial Pleat Module for Low Pressure Using an Ultrafiltration Membrane

  • Seo, Il-Gun;Shin, Se-Jong;Byoung-Ryul;Song, Hee-Yeol
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • A radial pleat module using a polysulfone membrane was developed. The permeation characteristics of the radial pleat module were compared with those of a flat plate module. The average module efficiency of the radial pleat module for the applied pressure range was 82% and was always greater than that of the spiral wound module. For the radial pleat module, in general, as the applied pressure increases, the flux increases and the rejection reduces. The concentration polarization causes the decrease of the flux for the long time operation. But it has been found that the radial pleat module is more efficient for the reduction of the concentration polarization because it has the more effective area per unit volume and can induce the turbulent flow in the module.

The development of high-performance PRO module and effects of operating condition on the performance of PRO module (고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향)

  • Han, Man Jae;Sim, Yeonju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.

Effect of GAC Packing Mass in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리에서 활성탄 충진량의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.68-76
    • /
    • 2017
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, non-toxicity, and incombustibility. The spiral wound module was manufactured with the flat membrane and a woven paper. Hybrid water treatment process was composed of the PVdF nanofibers spiral wound microfiltration and granular activated carbon (GAC) adsorption column. Effect of GAC packing mass was investigated by comparing the case of recycling or discharging the treated water using the synthetic solution of kaolin and humic acid. After each filtration experiment, water back-washing was performed, and recovery rate and filtration resistances were calculated. Also, effect of GAC adsorption was compared by measuring turbidity and $UV_{254}$ absorbance. As a result, there was no effect of GAC packing mass on turbidity treatment rate; however, the treatment rate of $UV_{254}$ absorbance was 0.7~3.6% for recycling the treated water, and increased to 3.2-5.7% for discharging the treated water. In the case of recycling the treated water, reversible filtration resistance ($R_r$) and irreversible filtration resistance ($R_{ir}$) trended to decrease as increasing GAC packing mass; however, total fitration resistance ($R_t$) was almost constant, and recovery rate of water back-washing trended to increase a little.