• Title/Summary/Keyword: Spinning speed

Search Result 159, Processing Time 0.024 seconds

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers

  • Im, Seung-Soon;Kim, Sung-Joong
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.

A Study On the Structure and Mechanical Properties of PP filament at Different Spinning speed and Draw ratio (방사속도 및 연신비 변화에 따른 Polypropylene filament의 구조와 물성에 관한 연구)

  • Lee, Eun-Woo;Cho, Kyu-Min;Cho, In-Sul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Effects of spinning speed and draw ratio on structure and mechanical properties of PP filament. A The crystalline structure and mechanical properties of uniaxially deformed polypropylene filament has been examined by XRD, birefringence, UTM and density method. Uniaxially deformed PP filament was prepared of various spinning speeds (300, 600, 900m/min.) and draw ratio(x2, x3, x4). From the results of these studies, it found the following facts. Firstly, it was found that the crystallinity and crystallite size (110plane) of the samples were increased with increasing of spinning speed and draw ratio, especially, it was rapidly increased between as spun yarn and 2 times draw ratio. Secondly, birefringence value was increased with increasing of spinning speed and draw ratio. The mechanical properties of initial modulus, tensile strength were increased with increasing of spinning speed and draw ratio also, but the degree of elongation decreased as spinning speed and draw ratio.

  • PDF

The Change of Fraction of T.T.M. and Initial Modulus for PET Tire Cord Fibers with Various Spinning Speed (방사속도에 따른 타이어 코드용 PET섬유의 T.T.M. 분율과 초기탄성계수의 변화)

  • Cho, Hyun Hok;Lee, Kee Hwan;Park, Jong Bum;Kim, Sung Joong;Rhim, Moo San
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.34-39
    • /
    • 1994
  • For the purpose of obtaining high modulus PET tire cord fiber by high spinning speed, the change of initial modulus and taut tie molecules (T.T.M) fraction with the PET tire cord fibers by different spinning speed is investigated. Initial modulus decreased with increasing spinning speed but increased above spinning speed of 1500m/min. Therefore, high modulus PET tire cord fiber may be obtained above spinning speed of 3500m/min. It was found that the initial modulus of fibers depends on fraction of T.T.M.

  • PDF

Experimental Verification for Transverse Vibration Behavior of a Spinning Disk with Torque Variation (구동토크의 고주파 변동 성분이 존재하는 회전원판의 횡진동 거동에 대한 실험 검증)

  • Lee Kee-Nyeong;Shin Eung-Soo;Kim Ock-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2005
  • This paper intends to identify experimentally the relationship between transverse vibration behavior of a spinning disk and high-frequency fluctuation in the driving torque. A testrig has been developed using a CD-ROM disk, a driving motor with torque-varying capability and a power transmission belt and a laser vibrometer was employed to measure the transverse vibration displacements of the disk for a certain range of the spinning speed. The results show that the spinning speed and the magnitude and frequency of the torque fluctuation affect the stability of the disk. In other word, the torque fluctuation causes the instability of the disk at several ranges of the spinning speed below the critical speed and its effects become larger as the disk spins faster or the magnitude of torque fluctuation becomes bigger. The experimental results are found to be in good agreement with analytical estimation.

Effects of Spinning Speed and Heat Treatment on the Mechanical Property and Biodegradability of Polylactic Acid Fibers (제사속도와 열처리에 따른 polylactic acid 섬유의 물성 및 생분해성 변화)

  • Park Chung-Hee;Hong Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.4 s.152
    • /
    • pp.607-614
    • /
    • 2006
  • This study was carried out to suggest the optimal spinning process condition which provides a proper range of tenacity and biodegradability as textile fibers. The effects of the melt spinning speed and heat treatment on the mechanical property and biodegradability of polylactic acid fiber were investigated. Polylactic acid(PLA) was spun in a high spinning speed of $2000{\sim}4000m/min$. Each specimen was heat-treated at $100^{\circ}C$ during 30min. Mechanical properties such as breaking stress and the degree of crystallinity were evaluated using WAXS. Biodegradability was estimated from the decrease of breaking stress, weight loss, and the degree of crystallinity after soil burial. Experimental results revealed that heat treated specimens showed higher breaking stress than untreated specimens, but the increase was not so high as was expected from the remarkable change of crystallinity by heat treatment. It was concluded that breaking stress was more influenced by spinning speed than heat treatment. In the soil burial test, however biodegradability calculated from weight loss was more influenced by heat treatment than spinning speed.

Effects of Spinning Conditions on Properties of Polyester Yarn Prepared using an Ultra-high-speed Melt Spinning Technique Equipped with a Steam Chamber

  • Ho, Yo-Seung;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3252-3258
    • /
    • 2010
  • In this study, the effects of the various parameters of spinning and drawing processes on the properties of polyester full drawn yarn (FDY) prepared by steam processing during high-speed spinning were investigated using several techniques. The wet shrinkage ratio of the FDY was able to be manipulated by controlling the temperature and draw ratio. The FDY made using the steam high speed spinning technique exhibited identical properties (such as tenacity, elongation, and wet shrinkage ratio) to that of regular FDY, made using the spin-draw process. FDY prepared using the steam process during high-speed spinning showed excellent dyeability. The dye pick-up of the polyester yarn spun at high-speed spinning was found to be improved when dyed under an atmospheric pressure of $100^{\circ}C$. This result was the same as regular FDY dyed under a high pressure of $130^{\circ}C$.

Structural Characteristics and Stress Relaxation Behaviors of PET Filament in High Speed Spinning (고속방사 PET Filament의 구조와 응력완화에 관한 연구)

  • Son, Kil Soo;Gu, Ja Gil;Yoon, Won Sik;Chang, Dong Ho
    • Textile Coloration and Finishing
    • /
    • v.8 no.6
    • /
    • pp.33-39
    • /
    • 1996
  • The purpose of this study was to investigate the structural characteristics, mechanical properties, and stress-relaxation behavior of PET filament, which were prepared at various spinning speeds(1650, 3300, 4500, 5000, 5500, and 6000 m/min) and anneal(12$0^{\circ}C$, 20 min & 15$0^{\circ}C$, 40 min). In 4500 m/min of spinning speed the crystallinity, crystallite size, and degree of orientation of PET filament rapidly increased. By increasing spinning speed, the temperature dependence of stress-relaxation sharply decreased. Same results were obtained from heat-treated samples. As a result, activation energy for stress-relaxation increased with the crystallinity and spinning speed.

  • PDF

Analysis on Po1y(lactic acid) Melt Spinning Dynamics (Poly(lactic acid) 용융방사공정의 동역학 해석)

  • Oh, Tae-Hwan;Kim, Seong-Cheol
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 2009
  • Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.

The physical properties and the dyeability of nylon fibers prepared by high speed spinning (고속방사 나일론 섬유의 물성 및 염색성)

  • 김태경;윤석한;임용진;손영아;한진완
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.197-207
    • /
    • 2002
  • The physical properties and dyeability of the nylon 6 fibers prepared by high speed spinning at take-up speed of 4,100~5,600m/min were investigated. The strain decreased as the take-up speed was raised from 4,100m/min to 4,400m/min, but further increase of take-up speed could not decrease the strain. The stresses of the fibers spinned at various take-up speed did not make any noticeable differences. Birefringences, densities and crystallinities of the fibers increased with the take-up speed and then reached to a nearly maximum value at 5,300m/min. In DSC diagrams, the $\gamma$ form of crystal became dominant at higher take-up speed. The dye uptakes of C. I. Acid Blue 113 on the fibers decreased a little with the increase of take-up speed.