• Title/Summary/Keyword: Spinel ferrite

Search Result 131, Processing Time 0.044 seconds

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

Characteristics in the Deposition of Mn-Zn Ferrite Thin Films by Ion Beam Sputtering Using a Single Ion Source (단일 이온원을 사용하는 이온빔 스퍼터링법에 의한 Mn-Zn 페라이트 박막의 증착 기구)

  • Jo, Hae-Seok;Ha, Sang-Gi;Lee, Dae-Hyeong;Hong, Seok-Gyeong;Yang, Gi-Deok;Kim, Hyeong-Jun;Kim, Gyeong-Yong;Yu, Byeong-Du
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.239-245
    • /
    • 1995
  • Mn-Zn ferrite thin films were deposited on $SiO_2(1000 \AA)/Si(100)$ by ion beam sputtering using a single ion source. A mosaic target consisting of a single crystal(ll0) Mn-Zn ferrite with a Fe metal strip on it was used. As-deposited films without oxygen gas flow have a wiistite structure due to oxygen deficiencies, which originated from the extra metal atoms sputtered from the metal strips during deposition. The as-deposited films with oxygen gas flow, however, have a spinel structure with (111) preferred orientation. The crystallization of thin films was maximized at the ion beam extraction voltage of 2.lkV, at which the deposited films are bombarded appropriately by the energetic secondary ions reflected from the target. As the extraction voltage increased or decreased from the optimum value, the crystallinity of thin films becomes poor owing to a weak and severe bombardment of the secondary ions, respectively. Crystallization due to the bombardment of the secondary ions was also maximized at the beam incidence angle of $55^{\circ}$. The as-deposited ferrite thin films with a spinel structure showed ferrimagnetism and had an in-plane magnetization easy axis.

  • PDF

Crystallographic and Moss bauer Studies of Cu-Ni Ferrite (Cu - Ni Ferrite의 결정학적 및 Mossbauer 연구)

  • 김우철;홍성렬;지상희;이승화;엄영랑;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 1997
  • $Cu_{0.9}Ni_{0.1}Fe_2O_4$ has been studied with Mossbauer spectroscopy and X-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.386{\AA}$. The Curie temperature is determined to be $T_c=755K$ for a heating rate of 5 K/ min. The Mossbauer spectra consist of two six-line patterns corresponding to $Fe^{3+}$ at the tetrahedral(A) and octahedral(B) sites. Debye temperatures for A and B sites are found to be 568 k and 194 K, respectively. Atomic migration of $Cu_{0.9}Ni_{0.1}Fe_2O_4$ begins near 350 K and increases rapidly with increasing temperature such a degree that 71% of the ferric ions as A sites have moved over to the B sites at 550 K.

  • PDF

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field (Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구)

  • Ji-Hye Lee;Sang-Min Lee;Young-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

Synthesis of Zinc Ferrite Nanocrystallites using Sonochemical Method (음향화학법을 이용한 아연페라이트 나노입자의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Kang, Kun-Uk;An, Dong-Hyun;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2007
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized zinc ferrite particles using chemical co-precipitation technique through a sonochemical method with surfactant such as oleic acid. The thermal behaviour of the zinc ferrite was determined by the thermoanalytical techniques (TGA-DSC). Powder X-ray diffraction measurements show that the samples have the spinel structure. Magnetic properties measurement were performed using a superconducting quantum interference device (SQUID) magnetometer.

Determination of Nonstoichiometry$(\delta)$and Phase Stability Region of $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ by a Coulometric Titration Method (전하적정법에 의한 $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ 훼라이트의 Nonstoichiometry$(\delta)$와 상안정 영역 결정)

  • 강선호;유한일;강대석;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1491-1500
    • /
    • 1994
  • Nonstoichiometry($\delta$) and the phase stability region of a ferrite spinel (Mg0.29Fe0.71)3-$\delta$O4 have been investigated by a coulometric titration method as a function of temperature(T) and oxygen partial pressure(Po2). It has been found that the spinel is thermodynamically stable in the ranges -8.0$\leq$log(PO2/atm)$\leq$-2.4, -7.0$\leq$log(PO2/atm)$\leq$-1.7 respectvely at 100$0^{\circ}C$. The nonstoichiometry extends over the ranges of -0.004$\leq$$\delta$$\leq$0.007, -0.008$\leq$$\delta$$\leq$0.006, -0.033$\leq$$\delta$$\leq$0.004 at 100$0^{\circ}C$, 120$0^{\circ}C$, respectvely. The observed PO2-dependence of $\delta$ suggests that the majority ionic defects are cation interstitials in the low PO2 region and cation vacancies in the high PO2 region.

  • PDF

The Crystallographic Structure and Magnetic Properties of Mg1-xZnxFeAlO4 (Mg1-xZnxFeAlO4의 결정학적 구조 및 자기적 성질)

  • Ko Jeong-Dae;Hong Sung-Rak
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • The crystal structure and magnetic properties of the $Mg_{1-x}Zn_xFeAlO_4\;(0{\leq}x\leq1.0)$ have been investigated by means of x-ray diffractometry and $M\ddot{o}ssbauer$ spectroscopy. The samples$(0{\leq}x\leq1.0)$ have been prepared by the ceramic sintering method. The x-ray diffraction pattern shows that the crystal structure of the samples is a cubic spinel type. The lattice constant has been found by extrapolation using the Nelson-Riley function and it increases slightly from $8.3496\AA\;to\;8.4128\AA$ with Zn concentration. The $M\ddot{o}ssbauer$ spectra for x<0.4 show a superposition of two sextets ana a paramagnetic doublet at room temperature. The superparamagnetic doublet for x<0.4 seems to be due to Al ion in tetrahedral site by the superparamagnetic clustering effect.

M ssbauer effect of ${Ni_{1-x}}{Cd_x}{FeAlO_4}$ (${Ni_{1-x}}{Cd_x}{FeAlO_4}$의 Mossbauer 효과)

  • Ko, Jeong-Dae;Hong, Sung-Rak
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.859-862
    • /
    • 2001
  • The crystal structure and magnetic properties of the $Ni_{1-x} Cd_xFeAlO_4$(0$\leq$x$\leq$0.5) have been investigated by means of X-ray diffractometry and Mossbauer spectroscopy. The samples($0\leq$x$\leq$0.5) have been prepared by the ceramic sintering method. The X-ray diffraction pattern shows that the crystal structure of the samples is a cubic spinel type. The lattice constant has been found by extrapolation using the Nelson- Riley function and it increases slightly from $8.321{\AA}$ to $8.410{\AA}$ with Cd concentration. The Mossbauer spectra for x<0.4 show a superposition of two sextets and a paramagnetic doublet at room temperature. The cation distribution for x=0 was determined to be $[Fe_{0.75}Al_{0.25}]^A[NiFe_{0.25}Al_{0.75}^BO_4$. The superparamagnetic doublet for x< 0.4 seems to be due to A1 ion in tetrahedral site by the superparamagnetic clustering effect.

  • PDF