• 제목/요약/키워드: Spindle Error

검색결과 166건 처리시간 0.027초

육안검사 시편개발에 관한 연구 (A Study on the Development of a Macrography Specimen)

  • 정종윤;황영수;이춘만;문덕희
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.52-60
    • /
    • 2004
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. High speed machine tool makers try to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics o( machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool.

엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용 (Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

다단 회전체 계의 동적 모델 개선에 관한 연구 (An Improved Dynamic Model for Multi-Stepped Rotor System)

  • 홍성욱;최성환
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.107-113
    • /
    • 2006
  • This paper presents an efficient dynamic modeling method for multi-stepped rotor system using effective spring elements to take into account the structural weakening effect due to the steps. This paper demonstrates that the Timoshenko shaft model give rise to a significant error in the case of multi-stepped rotors. An effective bending spring model is introduced to represent the structural weakening effect in the presence of steps. The proposed modeling method is validated through a series of simulations and experiments. Finally, a spindle is dealt with as an analysis example.

고속가공기의 가공성 평가방법에 관한 연구 (A Study on the Evaluative Method of Workability For High Speed Machining)

  • 이춘만;류승표;황영수;정원지;정종윤;고태조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1858-1863
    • /
    • 2003
  • The properties of a machine tool greatly affect machining quality since a machine tool has large variance in its features. Machine tool makers want to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics of machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool. The specimen is machined with a high speed machine and the features of the machine are analyzed with test items. They are surface roughness, overshoot in axial movement, errors in circular movement, feeding with small movement, and compensational error. This work can improve usability for a machine tool in machining practice.

  • PDF

NC 공작기계의 운동정도 측정에 관한 연구(제2보) -머시닝 센터의 직선 사이클 위치결정정도 측정에 관하여- (A study on Measuring of Motion Accuracy of NC Machine Tools(No. 2) - about Measuring of Linear Cycle Positioning Accuracy of Machining Center -)

  • 김영석
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.51-51
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of Machining centers as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of each axes directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, measuring systems are organized to measure linear displacements of table or spindle of machine center using laser interferometer, magnescale and tick pulses comming out from computer in order to get data at constant time intervals from the sensors. And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

시스템인식을 이용한 공구파손 검출 (Tool Fracture Detection Using System Identification)

  • 사승윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 1996
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There were so many studies to monitor and predict system, but it were mainly relied upon measuring of cutting force, current of motor spindle and using acoustic sensor, etc. In this study digital image of time series sequence was acquired taking advantage of optical technique. Then, mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR model was selected for system model, fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, we found there was a system stability.

  • PDF

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발 (An Ultra-precision Lathe for Large-area Micro-structured Roll Molds)

  • 오정석;송창규;황주호;심종엽;박천홍
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.

공작기계 스핀들용 유도전동기의 용량-속도에 따른 손실 및 발열특성 해석 (Power Loss and Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle according to the Rated Power-Speed)

  • 성기현;조한욱;황주호;심종엽
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1668-1677
    • /
    • 2013
  • This paper deals with the power loss and thermal characteristics of induction motor for machine tools according to the rated power and speed. To reduce the fabrication error by thermal strain in rotational machine tools, we calculated the power loss and thermal behavior of induction motors. Firstly, the inverse design of general induction motors for machine tool spindle has been performed. The inverse design results are compared with the torque-speed characteristic curve in motor's catalog. The power loss are calculated by finite element method(FEM) at rated condition. Secondary, the transient thermal characteristics of induction motors are calculated by equivalent thermal resistance model from Motor-CAD S/W. The inverse design, power loss and thermal behavior calculation for induction motors with various rated power and speed has been performed. Finally, to verify the design and calculation process of induction motor, we implemented the experimental set with 0.4kW 1710rpm class industrial induction motor model. The obtained thermal characteristics of experimental model confirmed that the design and power loss calculation processes are appropriate to the prediction of thermal strain in rotational machine tools.

볼바를 사용한 회전 테이블의 기하학적 오차 추정 (Geometric Errors Estimation of a Rotary Table using Double Ball-bar)

  • 이광일;이동목;권성환;양승한
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.98-105
    • /
    • 2010
  • In this paper, double ball-bar is used to estimate the geometric errors of a rotary table, which includes one-axial motion, two-radial motions and two-tilt motions, except the angular positioning error. To simplify the measurement procedures, three measurement steps have been designed and developed. At each measurement step, one end of the double ball-bar is fixed at the nose of spindle and the other end is located on the rotary table. And specific circular test path is planned to keep the distance between two balls as constant at ideal case. The relationship including the geometric errors of a rotary table and the measured distance between two balls which is distorted by the geometric errors is defined by using ball-bar equation. Each geometric error is modeled as $4^{th}$ order polynomial considering $C^1$-continuity. Finally the coefficients of polynomial are calculated by least-square method. Simulation is done to check the validation of the suggested method considering set-up errors and measurement noise. Suggested method is applied to estimate geometric errors of a rotary table of a 5-axis machine tool.