• Title/Summary/Keyword: Spinal stereotactic radiosurgery

Search Result 14, Processing Time 0.019 seconds

Novalis Stereotactic Radiosurgery for Spinal Dural Arteriovenous Fistula

  • Sung, Kyoung-Su;Song, Young-Jin;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.4
    • /
    • pp.420-424
    • /
    • 2016
  • The spinal dural arteriovenous fistula (SDAVF) is rare, presenting with progressive, insidious symptoms, and inducing spinal cord ischemia and myelopathy, resulting in severe neurological deficits. If physicians have accurate and enough information about vascular anatomy and hemodynamics, they achieve the good results though the surgery or endovascular embolization. However, when selective spinal angiography is unsuccessful due to neurological deficits, surgery and endovascular embolization might be failed because of inadequate information. We describe a patient with a history of vasospasm during spinal angiography, who was successfully treated by spinal stereotactic radiosurgery using Novalis system.

The Role of Stereotactic Radiosurgery in Metastasis to the Spine

  • Sohn, Se-Il;Chung, Chun-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Objective : The incidence and prevalence of spinal metastases are increasing, and although the role of radiation therapy in the treatment of metastatic tumors of the spine has been well established, the same cannot be said about the role of stereotactic radiosurgery. Herein, the authors present a systematic review regarding the value of spinal stereotactic radiosurgery in the management of spinal metastasis. Methods : A systematic literature search for stereotactic radiosurgery of spinal metastases was undertaken. Grades of Recommendation, Assessment, Development, and Education (GRADE) working group criteria was used to evaluate the qualities of study datasets. Results : Thirty-one studies met the study inclusion criteria. Twenty-three studies were of low quality, and 8 were of very low quality according to the GRADE criteria. Stereotactic radiosurgery was reported to be highly effective in reducing pain, regardless of prior treatment. The overall local control rate was approximately 90%. Additional asymptomatic lesions may be treated by stereotactic radiosurgery to avoid further irradiation of neural elements and further bone-marrow suppression. Stereotactic radiosurgery may be preferred in previously irradiated patients when considering the radiation tolerance of the spinal cord. Furthermore, residual tumors after surgery can be safely treated by stereotactic radiosurgery, which decreases the likelihood of repeat surgery and accompanying surgical morbidities. Encompassing one vertebral body above and below the involved vertebrae is unnecessary. Complications associated with stereotactic radiosurgery are generally self-limited and mild. Conclusion : In the management of spinal metastasis, stereotactic radiosurgery appears to provide high rates of tumor control, regardless of histologic diagnosis, and can be used in previously irradiated patients. However, the quality of literature available on the subject is not sufficient.

Assessment of the Optic-guided Patient Positioning for Spinal Stereotactic Radiosurgery Using Novalis ExacTrac System (노발리스 ExacTrac system을 이용한 척추 정위 방사선수술 방법 평가)

  • 이동준;손문준;최광영;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • Stereotactic radiosurgery for intracranial lesion is well established since the Lars Leksell first introduced radiosurgery concept in 1951 Its use in the treatment of spinal lesion has been limited by the availability of effective immobilization devices. The first clinical experience of the spinal stereotactic radiosurgery technique was reported by Hamilton AJ. in 1995. Recently, Optic-guided patient positioning technique for extracranial stereotactic radiosurgery was developed and reported. This study is for assess the target positioning accuracy of the optic guided patient positioning system Exactrac (BrainLab., Inc, Germany). We have designed phantom for assess the accuracy of spinal stereotactic radiosurgery The infrared reflective body markers attached to the relatively immobile part of the body and a series of 2 mm CT images was taken. The image sets were transferred to the planning computer. During the radiosurgery treatment, we measure the real-time display showing the positioning values from Exactrac computer. And we compare the isocenter deviation from irradiated center point of the film which was mounted on the lesion site of the phantom and pin hole site of that film. The accuracy of the ExacTrac system in positioning a target point shows enough for the clinical applications.

  • PDF

Contemporary treatment with radiosurgery for spine metastasis and spinal cord compression in 2015

  • Ryu, Samuel;Yoon, Hannah;Stessin, Alexander;Gutman, Fred;Rosiello, Arthur;Davis, Raphael
    • Radiation Oncology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • With the progress of image-guided localization, body immobilization system, and computerized delivery of intensity-modulated radiation delivery, it became possible to perform spine radiosurgery. The next question is how to translate the high technology treatment to the clinical application. Clinical trials have been performed to demonstrate the feasibility of spine radiosurgery and efficacy of the treatment in the setting of spine metastasis, leading to the randomized trials by a cooperative group. Radiosurgery has also demonstrated its efficacy to decompress the spinal cord compression in selected group of patients. The experience indicates that spine radiosurgery has a potential to change the clinical practice in the management of spine metastasis and spinal cord compression.

Comparison of IMRT and VMAT Techniques in Spine Stereotactic Radiosurgery with International Spine Radiosurgery Consortium Consensus Guidelines (International Spine Radiosurgery Consortium Consensus Guidelines에 따른 Spine Stereotactic Radiosurgery에서 IMRT와 VMAT의 비교연구)

  • Oh, Se An;Kang, Min Kyu;Kim, Sung Kyu;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • Stereotactic body radiation therapy (SBRT) is increasingly used to treat spinal metastases. To achieve the highest steep dose gradients and conformal dose distributions of target tumors, intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques are essential to spine radiosurgery. The purpose of the study was to qualitatively compare IMRT and VMAT techniques with International Spine Radiosurgery Consortium (ISRC) contoured consensus guidelines for target volume definition. Planning target volume (PTV) was categorized as TB, $T_{BPT}$ and $T_{ST}$ depending on sectors involved; $T_B$ (vertebral body only), $T_{BPT}$ (vertebral body+pedicle+transverse process), and $T_{ST}$ (spinous process+transverse process). Three patients treated for spinal tumor in the cervical, thoracic, and lumbar region were selected. Eacg tumor was contoured by the definition from the ISRC guideline. Maximum spinal cord dose were 12.46 Gy, 12.17 Gy and 11.36 Gy for $T_B$, $T_{BPT}$ and $T_{ST}$ sites, and 11.81 Gy, 12.19 Gy and 11.99 Gy for the IMRT, RA1 and RA2 techniques, respectively. Average fall-off dose distance from 90% to 50% isodose line for $T_B$, $T_{BPT}$, and $T_{ST}$ sites were 3.5 mm, 3.3 mm and 3.9 mm and 3.7 mm, 3.7 mm and 3.3 mm for the IMRT, RA1 and RA2 techniques, respectively. For the most complicated target $T_{BPT}$ sites in the cervical, thoracic and lumbar regions, the conformity index of the IMRT, RA1 and RA2 is 0.621, 0.761 and 0.817 and 0.755, 0.796 and 0.824 for rDHI. Both IMRT and VMAT techniques delivered high conformal dose distributions in spine stereotactic radiosurgery. However, if the target volume includes the vertebral body, pedicle, and transverse process, IMRT planning resulted in insufficient conformity index, compared to VMAT planning. Nevertheless, IMRT technique was more effective in reducing the maximum spinal cord dose compared to RA1 and RA2 techniques at most sites.

Esophageal tolerance to high-dose stereotactic radiosurgery

  • Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.234-238
    • /
    • 2013
  • Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.

Clinical Results of $Cyberknife^{(R)}$ Radiosurgery for Spinal Metastases

  • Chang, Ung-Kyu;Youn, Sang-Min;Park, Sukh-Que;Rhee, Chang-Hun
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.538-544
    • /
    • 2009
  • Objective : Primary treatment of spinal metastasis has been external beam radiotherapy. Recent advance of technology enables radiosurgery to be extended to extracranial lesions. The purpose of this study was to determine the clinical effectiveness and safety of stereotactic radiosurgery using Cyberknife in spinal metastasis. Methods : From June, 2002 to December, 2007, 129 patients with 167 spinal metastases were treated with Cyberknife. Most of the patients (94%) presented with pain and nine patients suffered from motor deficits. Twelve patients were asymptomatic. Fifty-three patients (32%) had previous radiation therapy. Using Cyberknife, 16-39 Gy in 1-5 fractions were delivered to spinal metastatic lesions. Radiation dose was not different regarding the tumor pathology or tumor volume. Results : After six months follow-up, patient evaluation was possible in 108 lesions. Among them, significant pain relief was seen in 98 lesions (91%). Radiological data were obtained in 83 lesions. The mass size was decreased or stable in 75 lesions and increased in eight lesions. Radiological control failure cases were hepatocellular carcinoma (5 cases), lung cancer (1 case), breast cancer (1 case) and renal cell carcinoma (1 case). Treatment-related radiation injury was not detected. Conclusion : Cyberknife radiosurgery is clinically effective and safe for spinal metastases. It is true even in previously irradiated patients. Compared to conventional radiation therapy, Cyberknife shows higher pain control rate and its treatment process is more convenient for patients. Thus, it can be regarded as a primary treatment modality for spinal metastases.

Evaluation of Real-time Target Positioning Accuracy in Spinal Radiosurgery (척추방사선수술시 실시간 추적검사에 의한 병소목표점 위치변이 평가)

  • Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.290-294
    • /
    • 2013
  • Stereotactic Radiosurgery require high accuracy and precision of patient positioning and target localization. We evaluate the real time positioning accuracy of isocenter using optic guided patient positioning system, ExacTrac (BrainLab, Germany), during spinal radiosurgery procedure. The system is based on real time detect multiple body markers attached on the selected patient skin landmarks. And a custom designed patient positioning verification tool (PPVT) was used to check the patient alignment and correct the patient repositioning before radiosurgery. In this study, We investigate the selected 8 metastatic spinal tumor cases. All type of tumors commonly closed to thoracic spinal code. To evaluate the isocenter positioning, real time patient alignment and positioning monitoring was carried out for comparing the current 3-dimensional position of markers with those of an initial reference positions. For a selected patient case, we have check the isocenter positioning per every 20 millisecond for 45 seconds during spinal radiosurgery. In this study, real time average isocenter positioning translation were $0.07{\pm}0.17$ mm, $0.11{\pm}0.18$ mm, $0.13{\pm}0.26$ mm, and $0.20{\pm}0.37$ mm in the x (lateral), y (longitudinal), z (vertical) directions and mean spatial error, respectively. And body rotations were $0.14{\pm}0.07^{\circ}$, $0.11{\pm}0.07^{\circ}$, $0.03{\pm}0.04^{\circ}$ in longitudinal, lateral, table directions and mean body rotation $0.20{\pm}0.11^{\circ}$, respectively. In this study, the maximum mean deviation of real time isocenter positioning translation during spinal radiosurgery was acceptable accuracy clinically.

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

The Effect of Perioperative Radiation Therapy on Spinal Bone Fusion Following Spine Tumor Surgery

  • Kim, Tae-Kyum;Cho, Wonik;Youn, Sang Min;Chang, Ung-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.597-603
    • /
    • 2016
  • Introduction : Perioperative irradiation is often combined with spine tumor surgery. Radiation is known to be detrimental to healing process of bone fusion. We tried to investigate bone fusion rate in spine tumor surgery cases with perioperative radiation therapy (RT) and to analyze significant factors affecting successful bone fusion. Methods : Study cohort was 33 patients who underwent spinal tumor resection and bone graft surgery combined with perioperative RT. Their medical records and radiological data were analyzed retrospectively. The analyzed factors were surgical approach, location of bone graft (anterior vs. posterior), kind of graft (autologous graft vs. allograft), timing of RT (preoperative vs. postoperative), interval of RT from operation in cases of postoperative RT (within 1 month vs. after 1 month) radiation dose (above 38 Gy vs. below 38 Gy) and type of radiation therapy (conventional RT vs. stereotactic radiosurgery). The bone fusion was determined on computed tomography images. Result : Bone fusion was identified in 19 cases (57%). The only significant factors to affect bony fusion was the kind of graft (75% in autograft vs. 41 in allograft, p=0.049). Other factors proved to be insignificant relating to postoperative bone fusion. Regarding time interval of RT and operation in cases of postoperative RT, the time interval was not significant (p=0.101). Conclusion : Spinal fusion surgery which was combined with perioperative RT showed relatively low bone fusion rate (57%). For successful bone fusion, the selection of bone graft was the most important.