• 제목/요약/키워드: Spinal cord development

검색결과 134건 처리시간 0.025초

근위축측삭경화증에 대한 치료약물 임상시험 현황 (Update of Therapeutic Clinical Trials for Amyotrophic Lateral Sclerosis)

  • 김남희;이민오
    • Annals of Clinical Neurophysiology
    • /
    • 제17권1호
    • /
    • pp.1-16
    • /
    • 2015
  • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by progressive death of motor neurons in the cortex, brainstem, and spinal cord. Until now, many treatment strategies have been tested in ALS, but so far only Riluzole has shown efficacy of slightly slowing disease progression. The pathophysiological mechanisms underlying ALS are multifactorial, with a complex interaction between genetic factors and molecular pathways. Other motor neuron disease such as spinal muscular atrophy (SMA) and spinobulbar muscular atrophy (SBMA) are also progressive neurodegenerative disease with loss of motor neuron as ALS. This common thread of motor neuron loss has provided a target for the development of therapies for these motor neuron diseases. A better understanding of these pathogenic mechanisms and the potential pathological relationship between the various cellular processes have suggested novel therapeutic approaches, including stem cell and genetics-based strategies, providing hope for feasible treatment of ALS.

Effects of Cadmium on Embryo Hatchability, Larval Development and Survival of the Olive flounder, Paralichthys olivaceus

  • Min, Eun Young;Kang, Ju-Chan
    • 한국어병학회지
    • /
    • 제26권1호
    • /
    • pp.11-17
    • /
    • 2013
  • The cadmium (Cd) toxicological effects on the fertilized eggs, embryos and larvae were investigated in olive flounder, Paralichthys olivaceus water-borne exposed to Cd. The survival rate and hatching success of the embryos significantly diminished in treated groups in dependence of the Cd concentration. Significant differences were found at ${\geq}30{\mu}g\;L^{-1}$ exposed groups compared to the control group. A significant increase of malformation of the embryo was observed at ${\geq}20{\mu}g\;L^{-1}$ exposed groups. They usually include such symptoms as clouded yolk-sac abnormality, fin erosion and spinal curvature. A significant reduction in the survival rate of the larvae was observed in ${\geq}20{\mu}g\;L^{-1}$ exposed groups with accompanied by the disorder. Notably, in larvae, a concentration as low as $10{\mu}g\;L^{-1}$ exposed groups caused significant elevated abnormalities that is incidences of spinal cord deformation, abnormal eyes, deformation of the head region and severe developmental delay.

The Similarities and Differences between Intracranial and Spinal Ependymomas : A Review from a Genetic Research Perspective

  • Lee, Chang-Hyun;Chung, Chun Kee;Ohn, Jung Hun;Kim, Chi Heon
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권2호
    • /
    • pp.83-90
    • /
    • 2016
  • Ependymomas occur in both the brain and spine. The prognosis of these tumors sometimes differs for different locations. The genetic landscape of ependymoma is very heterogeneous despite the similarity of histopathologic findings. In this review, we describe the genetic differences between spinal ependymomas and their intracranial counterparts to better understand their prognosis. From the literature review, many studies have reported that spinal cord ependymoma might be associated with NF2 mutation, NEFL overexpression, Merlin loss, and 9q gain. In myxopapillary ependymoma, NEFL and HOXB13 overexpression were reported to be associated. Prior studies have identified HIC-1 methylation, 4.1B deletion, and 4.1R loss as common features in intracranial ependymoma. Supratentorial ependymoma is usually characterized by NOTCH-1 mutation and p75 expression. TNC mutation, no hypermethylation of RASSF1A, and GFAP/NeuN expression may be diagnostic clues of posterior fossa ependymoma. Although MEN1, TP53, and PTEN mutations are rarely reported in ependymoma, they may be related to a poor prognosis, such as recurrence or metastasis. Spinal ependymoma has been found to be quite different from intracranial ependymoma in genetic studies, and the favorable prognosis in spinal ependymoma may be the result of the genetic differences. A more detailed understanding of these various genetic aberrations may enable the identification of more specific prognostic markers as well as the development of customized targeted therapies.

포유자돈(哺乳仔豚)에 발생(發生)한 Viral Encephalomyelitis의 병리조직학적관찰(病理組織學的觀察) (Histopathological Observations on Viral Encephalomyelitis in Suckling Piglets Raised in Korea)

  • 김순복;박근식;신동규;이창구
    • 대한수의학회지
    • /
    • 제20권1호
    • /
    • pp.25-27
    • /
    • 1980
  • The outbreak of viral encephalomyelitis (Talfan disease) in suckling piglets was diagnosed pathologically for the first time in Korea. The clinical signs of affected sucklings were very high morbidity without death, and fever ($39^{\circ}C$ or higher) with incoordination of the rear limbs and paresis, while no specific gross lesions were observed at autopsy. Histopathological changes were confined to the nervous system, and were of the nature of a nonsuppurative and nondemyelinating encephalomyelitis which is usual for the viral encephalitis. It was characterized by perivascular cuffing, meningitis, neuronal degeneration, neuronophagia and glial nodules in the brain and spinal cord.

  • PDF

Embryonal Neuromesodermal Progenitors for Caudal Central Nervous System and Tissue Development

  • Shaker, Mohammed R.;Lee, Ju-Hyun;Sun, Woong
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권3호
    • /
    • pp.359-366
    • /
    • 2021
  • Neuromesodermal progenitors (NMPs) constitute a bipotent cell population that generates a wide variety of trunk cell and tissue types during embryonic development. Derivatives of NMPs include both mesodermal lineage cells such as muscles and vertebral bones, and neural lineage cells such as neural crests and central nervous system neurons. Such diverse lineage potential combined with a limited capacity for self-renewal, which persists during axial elongation, demonstrates that NMPs are a major source of trunk tissues. This review describes the identification and characterization of NMPs across multiple species. We also discuss key cellular and molecular steps for generating neural and mesodermal cells for building up the elongating trunk tissue.

Urological Evaluation of Tethered Cord Syndrome

  • Park, Kwanjin
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권3호
    • /
    • pp.358-365
    • /
    • 2020
  • To describe how to perform urological evaluation in children with tethered cord syndrome (TCS). Although a common manifestation of TCS is the development of neurogenic bladder in developing children, neurosurgeons often face difficulty in detecting urological problems in patients with TCS. From a urological perspective, diagnosis of TCS in developing children is further complicated due to the differentiation between neurogenic bladder dysfunctions and transient bladder dysfunctions owing to developmental problems. Due to the paucity of evidence regarding evaluation prior to and after untethering, I have shown the purpose and tools for evaluation in my own practice. This may be tailored to the types of neurogenic bladder, developmental status, and risks for deterioration. While the urodynamic study (UDS) is the gold standard test for understanding bladder function, it is not a panacea in revealing the nature of bladder dysfunction. In addition, clinicians should consider the influence of developmental processes on bladder function. Before untethering, UDS should reveal synergic urethral movement, which indicates an intact sacral reflex and lack of TCS. Postoperatively, the measurement of post-void residual urine volume is a key factor for the evaluation of spontaneous voiders. In case of elevation, fecal impaction, which is common in spinal dysraphism, should be addressed. In patients with clean intermittent catheterization, the frequency-volume chart should be monitored to assess the storage function of the bladder. Toilet training is an important sign of maturation, and its achievement should be monitored. Signs of bladder deterioration should be acknowledged, and follow-up schedule should be tailored to prevent upper urinary tract damage and also to determine an adequate timing for intervention. Neurosurgeons should be aware of urological problems related to TCS as well as urologists. Cooperation and regular discussion between the two disciplines could enhance the quality of patient care. Accumulation of experience will improve follow-up strategies.

한국형 재활환자분류체계 버전 1.0 개발 (The Development of Korean Rehabilitation Patient Group Version 1.0)

  • 황수진;김애련;문선혜;김지희;김진휘;하영혜;양옥영
    • 보건행정학회지
    • /
    • 제26권4호
    • /
    • pp.289-304
    • /
    • 2016
  • Background: Rehabilitations in subacute phase are different from acute treatments regarding the characteristics and required resource consumption of the treatments. Lack of accuracy and validity of the Korean Diagnosis Related Group and Korean Out-Patient Group for the acute patients as the case-mix and payment tool for rehabilitation inpatients have been problematic issues. The objective of the study was to develop the Korean Rehabilitation Patient Group (KRPG) reflecting the characteristics of rehabilitation inpatients. Methods: As a retrospective medical record survey regarding rehabilitation inpatients, 4,207 episodes were collected through 42 hospitals. Considering the opinions of clinical experts and the decision-tree analysis, the variables for the KRPG system demonstrating the characteristics of rehabilitation inpatients were derived, and the splitting standards of the relevant variables were also set. Using the derived variables, we have drawn the rehabilitation inpatient classification model reflecting the clinical situation of Korea. The performance evaluation was conducted on the KRPG system. Results: The KRPG was targeted at the inpatients with brain or spinal cord injury. The etiologic disease, functional status (cognitive function, activity of daily living, muscle strength, spasticity, level and grade of spinal cord injury), and the patient's age were the variables in the rehabilitation patients. The algorithm of KRPG system after applying the derived variables and total 204 rehabilitation patient groups were developed. The KRPG explained 11.8% of variance in charge for rehabilitation inpatients. It also explained 13.8% of variance in length of stay for them. Conclusion: The KRPG version 1.0 reflecting the clinical characteristics of rehabilitation inpatients was classified as 204 groups.

Responses of Dorsal Horn Neurons to Peripheral Chemical Stimulation in the Spinal Cord of Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Joon-Ho;Lee, Ji-Hye;Eun, Su-Yong;Kim, Sang-Jeong;Lim, Won-Il;Cho, Sun-Hee;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.15-24
    • /
    • 2000
  • Although nociceptive informations are thought to be processed via different neural mechanisms depending on the types of stimuli, sufficient data have not been accumulated yet. We performed a series of experiments to elucidate the possible neural mechanisms as to chemical stimuli such as formalin, capsaicin and ATP. Single unit activity of wide dynamic range (WDR) neurons and high threshold cells were recorded extracellularly from the lumbosacral enlargement of cat spinal cord before and after chemical stimulation to its receptive field (RF). Each chemical substance - formalin $(20{\mu}l,\;4%),$ capsaicin (33 mM) or Mg-ATP (5 mM)- was injected intradermally into the RFs and then the changes in the spontaneous activity, mechanical threshold and responses to the peripheral mechanical stimuli were observed. In many cases, intradermal injection of formalin (5/11) and capsaicin (8/11) resulted in increase of the spontaneous activity with a biphasic pattern, whereas ATP (8/8) only showed initial responses. Time courses of the biphasic pattern, especially the late response, differed between formalin and capsaicin experiments. One hour after injection of each chemical (formalin, capsaicin, or ATP), the responses of the dorsal horn neurons to mechanical stimuli increased at large and the RFs were expended, suggesting development of hypersensitization (formalin 6/10, capsaicin 8/11, and ATP 15/19, respectively). These results are suggested that formalin stimulates peripheral nociceptor, local inflammation and involvement of central sensitization, capsaicin induces central sensitization as well as affects the peripheral C-polymodal nociceptors and neurogenic inflammation, and ATP directly stimulates peripheral nociceptors.

  • PDF

Disorders of Secondary Neurulation : Mainly Focused on Pathoembryogenesis

  • Yang, Jeyul;Lee, Ji Yeoun;Kim, Kyung Hyun;Wang, Kyu-Chang
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권3호
    • /
    • pp.386-405
    • /
    • 2021
  • Recent advancements in basic research on the process of secondary neurulation and increased clinical experience with caudal spinal anomalies with associated abnormalities in the surrounding and distal structures shed light on further understanding of the pathoembryogenesis of the lesions and led to the new classification of these dysraphic entities. We summarized the changing concepts of lesions developed from the disordered secondary neurulation shown during the last decade. In addition, we suggested our new pathoembryogenetic explanations for a few entities based on the literature and the data from our previous animal research. Disordered secondary neurulation at each phase of development may cause corresponding lesions, such as failed junction with the primary neural tube (junctional neural tube defect and segmental spinal dysgenesis), dysgenesis or duplication of the caudal cell mass associated with disturbed activity of caudal mesenchymal tissue (caudal agenesis and caudal duplication syndrome), failed ingression of the primitive streak to the caudal cell mass (myelomeningocele), focal limited dorsal neuro-cutaneous nondisjunction (limited dorsal myeloschisis and congenital dermal sinus), neuro-mesenchymal adhesion (lumbosacral lipomatous malformation), and regression failure spectrum of the medullary cord (thickened filum and filar cyst, low-lying conus, retained medullary cord, terminal myelocele and terminal myelocystocele). It seems that almost every anomalous entity of the primary neural tube may occur in the area of secondary neurulation. Furthermore, the close association with the activity of caudal mesenchymal tissue in secondary neurulation involves a wider range of surrounding structures than in primary neurulation. Although the majority of the data are from animals, not from humans and many theories are still conjectural, these changing concepts of normal and disordered secondary neurulation will provoke further advancements in our management strategies as well as in the pathoembryogenetic understanding of anomalous lesions in this area.

The role of botulinum toxin type A related axon transport in neuropathic pain induced by chronic constriction injury

  • Bu, Huilian;Jiao, Pengfei;Fan, Xiaochong;Gao, Yan;Zhang, Lirong;Guo, Haiming
    • The Korean Journal of Pain
    • /
    • 제35권4호
    • /
    • pp.391-402
    • /
    • 2022
  • Background: The mechanism of peripheral axon transport in neuropathic pain is still unclear. Chemokine ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) as well as GABA transporter 1 (GAT-1) play an important role in the development of pain. The aim of this study was to explore the axonal transport of CXCL13/CXCR5 and GAT-1 with the aid of the analgesic effect of botulinum toxin type A (BTX-A) in rats. Methods: Chronic constriction injury (CCI) rat models were established. BTX-A was administered to rats through subcutaneous injection in the hind paw. The pain behaviors in CCI rats were measured by paw withdrawal threshold and paw withdrawal latencies. The levels of CXCL13/CXCR5 and GAT-1 were measured by western blots. Results: The subcutaneous injection of BTX-A relieved the mechanical allodynia and heat hyperalgesia induced by CCI surgery and reversed the overexpression of CXCL13/CXCR5 and GAT-1 in the spinal cord, dorsal root ganglia (DRG), sciatic nerve, and plantar skin in CCI rats. After 10 mmol/L colchicine blocked the axon transport of sciatic nerve, the inhibitory effect of BTX-A disappeared, and the levels of CXCL13/CXCR5 and GAT-1 in the spinal cord and DRG were reduced in CCI rats. Conclusions: BTX-A regulated the levels of CXCL13/CXCR5 and GAT-1 in the spine and DRG through axonal transport. Chemokines (such as CXCL13) may be transported from the injury site to the spine or DRG through axonal transport. Axon molecular transport may be a target to enhance pain management in neuropathic pain.